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INTRODUCTION

Similar to the human’s multiple perception system, the robot can
also benefit from cross‐modal learning. The connection between
visual input and tactile perception is potentially important for auto‐
mated operations. However, establishing an algorithmic mapping
of the visual modal to the tactile modal is a challenging task. In this
work, we use the framework of GANs to propose a cross‐modal
imaging method for estimating the tactile physical properties val‐
ues based on the Gramian Summation Angular Field, combined
with visual‐tactile embedding cluster fusion and feature matching
methods. The approach estimates 15 tactile properties. In par‐
ticular, the task attempts to predict unknown surface properties
based on ”learned knowledge”. Our results surpass the state‐of‐
the‐art approach on most tactile dimensions of the publicly avail‐
able dataset. Additionally, we conduct a robustness study to verify
the effect of angle and complex environment on the network pre‐
diction performance.
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Figure 1. Workflow. The main concept of imaging estimation using GAN‐based methods. (a) : Visual data
acquisition under the standard RGB camera. (b) : Cross‐modal visual‐tactile generation model. (c) : Generated
results with tactile information. (d) : Predicted values reduced from the generated results.

METHODOLOGY

Our idea: Modeling the transition problem from the visual to the
tactile domain as an imaging estimation task based on the Gramian
Summation Angular Field.
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Figure 2. the Gramian Summation Angular Field workflow..

METHODOLOGY

Wang et al.[18] propose the Gramian Summation Angular
Field(GASF) coding framework to encode time series into images.
Motivated by these works, our work tries to represent the tactile
data as a 2D image/matrix.

At the same time, the GASF coding has an accurate inverse map
on the [0, 1] interval. The particular bijective property lays the
foundation for GAN‐based imaging estimation.

We use a polar coordinate system to represent the tactile sequence
X with the equation below:

ϕ = arccos (xi) , 0 ≤ xi ≤ 1, xi ∈ X. (1)

After converting to the polar coordinate system, we take the tactile
sequence as a 1-D metric space, and by defining the inner product
⟨x, y⟩ = x ·y−

√
1 − x2 ·

√
1 − y2 we can define the GASF as follows:

GASF = [cos (ϕi + ϕj)] (2)

= X
′ · X −

√
I − (X ′)2 ·

√
I − X2. (3)

The main diagonal GASFi,i is the special case that contains the
original value information. From the main diagonal {GASFi,i} =
{cos (2ϕi)}, we are allowed to precisely reconstruct the original se‐
quences by:

cos (ϕ) =
√√√√cos (2ϕ) + 1

2
, ϕ ∈

[
0,

π

2

]
. (4)

NETWORK

Our model is built upon the base of the generative adversarial
networks(GANs) with the GASF‐based encoding framework, and
trained with the additional WGAN‐GP , feature‐matching losses
and visual‐tactile embedding cluster fusion module.
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Figure 3. The overview of the proposed framework. Our model passes the input images to the encoder(1) and
the decoder(3). The clustering Fusion module(2) is constructed with 4 residual blocks. The real image obtained
from the input physical tactile vector(5) processed by the GASF coding framework(6), with the generated image(4)
is input to the discriminator(8) for conditional adversarial training. We also extract the output from the feature
layers of the discriminator(8) for the computation of the feature matching loss(9).

EXPERIMENTS

Dataset

We use the Surface Property Synesthesia dataset[16] as our
dataset. The dataset provides a collection of surface images of
421 materials taken at different angles by a standard RGB camera
under a diffuse light source. 15 surface tactile physical properties
are measured with the Biotac Tactile sensing device.

Comparison Study

It can be seen from the comparison Table 1 that our proposed
single‐image estimation method outperformed the state‐of‐the‐
art results obtained in [16] on several tactile dimensions, obtain‐
ing the best average R2 in the single‐image estimation comparison
task, and the lowest MAE score in all single/multiple image exper‐
iments.
Table 1. The tactile estimation results(R2). The comparison experiment results are displayed. Red and blue text
correspond to the first and second best scores respectively.

Properties Baseline(single) DEC(single) NVS
(multi)

VB‐NVS
(multi) Ours

fRS 0.07 0.54 0.62 0.65 0.09
cDF 0.49 0.52 0.53 0.50 0.58
tCO 0.50 0.62 0.63 0.61 0.76
cYD 0.44 0.64 0.55 0.57 0.70
aTK −0.46 −0.07 0.02 −0.05 0.53
mTX 0.43 0.43 0.56 0.58 0.59
cCM 0.13 0.47 0.53 0.57 0.63
cDP 0.35 0.67 0.54 0.64 0.56
cRX 0.11 0.44 0.49 0.45 0.48
mRG 0.46 0.47 0.55 0.57 0.21
mCO 0.56 0.54 0.68 0.70 0.73
uRO 0.32 0.44 0.51 0.47 0.69
tPR 0.57 0.65 0.54 0.68 0.36
uCO 0.57 0.59 0.63 0.66 0.52
fST 0.53 0.59 0.64 0.61 0.54

MeanR2 0.34 0.50 0.53 0.55 0.53
MeanMAE 6.17 5.53 5.34 5.28 4.97

CONCLUSIONS

Interactive operation of robots with environment and objects can
benefit from surface property estimation to improve manipula‐
tion robustness.Such as the need for precise manipulation of dif‐
ferent fabrics in manufacturing or ordering surfaces based on
their roughness.
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