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ABSTRACT

Similar to the human’s multiple perception system, the robot
can also benefit from cross-modal learning. The connection
between visual input and tactile perception is potentially im-
portant for automated operations. However, establishing an
algorithmic mapping of the visual modal to the tactile modal
is a challenging task. In this work, we use the framework
of GANs to propose a cross-modal imaging method for es-
timating the tactile physical properties values based on the
Gramian Summation Angular Field, combined with visual-
tactile embedding cluster fusion and feature matching meth-
ods. The approach estimates 15 tactile properties. In partic-
ular, the task attempts to predict unknown surface properties
based on ”learned knowledge”. Our results surpass the state-
of-the-art approach on most tactile dimensions of the publicly
available dataset. Additionally, we conduct a robustness study
to verify the effect of angle and complex environment on the
network prediction performance.

Index Terms— Visual-Tactile, Physical Properties Esti-
mation, Generative Adversarial Network, Cross-Modal

1. INTRODUCTION

People live in a world full of a wide variety of modal informa-
tion. In order for artificial intelligence to be advanced enough
to understand the world around us, it needs to be able to rea-
son and interpret such multimodal signals together and to en-
able cross-modal learning[1]. Among these modalities, vision
and touch are two important and interrelated perceptual chan-
nels. Cross-modal connections between vision and touch can
enable robots to more effectively handle various objects and
environments in both industrial settings and our daily lives,
furthermore, can improve the ability of robots to interact with
unknown environments and objects. In previous work, vision-
based sensing technologies have been widely used in vari-
ous robotic work scenarios, such as object recognition[2] and
tracking[3], object detection[4] and driving navigation[5]. In
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Fig. 1. Workflow. The main concept of imaging estimation
using GAN-based methods. (a) : Visual data acquisition un-
der the standard RGB camera. (b) : Cross-modal visual-
tactile generation model. (c) : Generated results with tactile
information. (d) : Predicted values reduced from the gener-
ated results.

addition, tactile sensor-based robots can perform tasks like
object grasping and surface vibrotactile recognition. Some re-
cent work[6, 7] has attempted to use visual and tactile sensors
together to integrate and transform visual and tactile signals in
order to mimic human cross-modal perception. Unlike the in-
direct visual-tactile perception tasks in existing robotics, our
work attempts to generate physical tactile properties of the
surface from visual images directly.

The main objective of our work is to find a tighter map-
ping between vision and touch so that we can create a net-
work that estimates tactile physical properties directly from
visual information as shown in Fig. 1. In particular, our
study expects the network to be able to estimate the prop-
erties of unknown textures based on ”learned knowledge”,
which is a challenging task. To this end, we introduced a
deep-learning-based framework that learns the complex re-
lationship between visual perception and the tactile physical
properties of surfaces such as friction, roughness, compli-
ance, thermal conductance, and so on. The presented frame-
work is built upon the base of the generative adversarial
networks(GANs) with the GASF-based encoding framework,
and trained with the additional WGAN-GP, feature-matching
losses and visual-tactile embedding cluster fusion module.
Our encoding framework can help reduce the scale discrep-
ancy between visual images and tactile vectors, and the inclu-
sion of the cluster fusion module and optimization strategy
improves the generative performance and robustness of the
network.



Compared with previous work, our method can gener-
ate results closer to the ground truth on multiple tactile at-
tributes, achieving better average prediction results. We also
conduct robustness experiments to consider the effects of an-
gle and complex environments on the network generation per-
formance. The experimental results show that our modal can
output accurate predicted values from a single random angle
image of a material with robustness against illumination, an-
gle changes and noise.

2. RELATED WORK
Our experience of the world is multimodal. Multimodel learn-
ing is a vibrant field. For example, OpenAI kicks off a big
year in multimodal learning with CLIP[8], which matches im-
ages and text. Dall·E[9] generates images that correspond to
input text. Our work falls under the umbrella of cross-modal
translation, which is an important research task in multimodal
learning. Cross-modal translation can be classified into two
types, example-based, and generative, where generative trans-
lation are considered to be a more challenging problem due to
its need of the ability to generate signal or symbol sequences.
Several prior research works[10, 11, 12] show generative ad-
versarial networks with effective generation performances on
cross-modal translation.

In the field of robotics, the addition of tactile property in-
formation can enrich the physical properties of the perceived
object and help the robot decide in advance how to inter-
act with the environment. Liu et al.[13] constructed a cross-
modal perception from ground images to tactile signals based
on the CycleGAN framework, which helps visually impaired
people sensing the ground and brings a better traveling expe-
rience for them. TactGAN[14] is based on the dataset created
by Strese[15] and attempts to learn the mapping relationship
between vision and tactile by synthesizing real tactile signals
from visual inputs. The goal of our research goes beyond the
general task and hopes to estimate tactile properties directly
from visual information. Our study use the dataset presented
in the work[16] and compare our proposed method with it. In
our work, we model visual to tactile cross-modal prediction as
an image-to-image generation problem based on the bijective
property of GASF coding. The 15 tactile property predictions
can be obtained from the output. More details will be pre-
sented in Section 3.1.

3. METHODOLOGY
We study the problem of translating from the visual to the
tactile domain, which can be modeled as a conditional image
generation framework with a GASF-based encoding module.
Fig. 2 shows the structure of our network. In particular, we
focus on the construction of the imaging coding framework
and the process of outputting physical tactile vectors from the
generated results.

3.1. Imaging Coding Framework

Researchers are paying attention to how to reformulate se-
quential features as visual clues. Donner et al.[17] construct

adjacency matrices from predefined recursive functions to
convert time series into complex networks. Wang et al.[18]
propose the Gramian Summation Angular Field(GASF) cod-
ing framework to encode time series into images. Motivated
by these works, our work tries to represent the tactile data as
a 2D image/matrix with the GASF-based imaging encoding
framework. The GASF framework preserves the temporal
and spatial information of the sequence allowing the machine
to learn the structure and patterns of the sequence visually.
At the same time, the GASF coding has an accurate inverse
map on the [0, 1] interval. The particular bijective property
lays the foundation for GAN-based imaging estimation.

We first connect the tactile vectors at five locations to ob-
tain the tactile sequence X = {x1, x2, . . . , xn}, and rescale
it so that all values can fall within the interval [0, 1]. Thus
we can use a polar coordinate system to represent this tactile
sequence X with the equation below:

ϕ = arccos (xi) , 0 ≤ xi ≤ 1, xi ∈ X. (1)

Rescaled data in interval [0, 1] corresponds to the cosine
angle ∈

[
0, π

2

]
. After converting to the polar coordinate sys-

tem, we take the tactile sequence as a 1-D metric space, and
by defining the inner product ⟨x, y⟩ = x · y −

√
1− x2 ·√

1− y2 we can define the GASF as follows:
GASF = [cos (ϕi + ϕj)] (2)

= X
′
·X −

√
I − (X ′)

2 ·
√

I −X2. (3)

I is the row vector [1, 1, . . . , 1]. In this work we are
particularly interested in the potential spatial information
retained by the encoded tactile vector, which can help mit-
igate the scale discrepancy between the visual and tactile
domains. In fact, this way of defining the inner product
k (xi, xj) increases the dimensions of the original data to
implement data augmentation, which is usually equivalent to
a kernel trick. As mentioned above, the mapping functions
of 0/1 rescaled data are bijections. Given a tactile series,
the proposed map produces one and only one result in the
polar coordinate system with a unique inverse map. Actu-
ally, The main diagonal GASFi,i is the special case that
contains the original value information. From the main diag-
onal {GASFi,i} = {cos (2ϕi)}, we are allowed to precisely
reconstruct the original sequences by:

cos (ϕ) =

√
cos (2ϕ) + 1

2
, ϕ ∈

[
0,

π

2

]
. (4)

Thus, we can estimate tactile physical property vectors by re-
covering the underlying sequence information in the genera-
tion results.

3.2. Clustering Fusion Module

Previous work on cross-modal generation has demonstrated
that strong supervision by adding auxiliary classification
targets[19] can guide the output of more reasonable results.
Residue-Fusion GAN[12] obtain better generative results by
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Fig. 2. The overview of the proposed framework. Our model passes the input images to the encoder(1) and the decoder(3).
The clustering Fusion module(2) is constructed with 4 residual blocks. The real image obtained from the input physical tactile
vector(5) processed by the Gramian Summation Angular Field(GASF) coding framework(6), with the generated image(4) is
input to the discriminator(8) for conditional adversarial training. We also extract the output from the feature layers of the
discriminator(8) for the computation of the feature matching loss(9).

adding a residual fusion module to the generative model,
which allows the network to extract more label information
from the input visual modality. However, in general tasks,
semantic labels contain information about material categories
and do not always provide rich tactile information, e.g. plas-
tics come in many forms with distinct surface properties but
fall under one label. Therefore, in our work, we extend the
unsupervised clustering fusion module to the network by
creating visual-tactile embedding labels instead of seman-
tic labels. Considering the excellent performance of deep
clustering algorithms in image clustering tasks, we use a
classical deep clustering approach, the Deep Adaptive Clus-
tering framework (DAC)[20], to create our clustering target.
We concatenate visual data and tactile information to obtain
visual-tactile representations and input them into the adaptive
clustering framework. In DAC, similarities are computed
based on the cosine distance between label features generated
by the deep convolutional network. We remove the final fully
connected layer, extract the feature representation of the label
information, and then upsample the label feature information
through 4 layers of residual blocks to connect it with the fea-
ture vector provided by the generator downsampling process
as a clustering fusion module.

3.3. Cross-Modal Network

Our cross-modal learning model consists of a generator and a
discriminator. For the generator, we use the U-Net model[21]
structure as the network backbone. Prior work adopts a strat-
egy of jumping connections between the upsampling and
downsampling layers to let this information pass directly
through the network and achieve effective results. Thus in

the generator model we skip connections between each layer
i and the layer n− i, where n is the total number of layers.

The discriminator uses the structure of patchGAN[10],
which effectively models the image as a Markov random field.
Regular GANs map from an image to a single scalar output,
which signifies “real” or “fake”, whereas the patchGAN maps
from to an N × N array of outputs X , where each Xi,j sig-
nifies whether the patchi,j in the image is real or fake. Such
structure fuses local image features with overall image fea-
tures, allowing for more preservation of the image in genera-
tion tasks. In our model, the final receptive fields of the dis-
criminator turn out to be 70× 70 patches in the input image.

A common approach to improving the stability of the net-
work is to adopt WGAN-GP loss[22] as Ladv−gp to apply
a gradient penalty to each sample independently. Another
way is to add feature matching loss Lfm during the train-
ing process[23]. We extract the feature outputs from multi-
ple layers of the discriminator and match these feature rep-
resentations from the real and the generated outputs with L1
distance. In addition, we calculate the MSE distance as Lest

between the generated result and the ground truth. Hence, our
final objective functions of the proposed network are shown
below:

Lfm = Ey∼p(y),ỹ∼p(ỹ)

T∑
i=1

1

Ni
∥ D(i) (y)−D(i) (ỹ) ∥1 .

(5)

L = Ladv−gp + αLfm + βLest. (6)

Here, y and ỹ denote the real samples and generated samples,
p(y) and p(ỹ) denote the distributions of the real and generated
data. And T is the total number of layers in the discriminator



D, D(i) represents the features in the i-th layer, and Ni is the
number of elements in D(i).

4. EXPERIMENTS
4.1. Dataset

We use the Surface Property Synesthesia dataset[16] as our
dataset. The dataset provides a collection of surface images
of 421 materials taken at different angles by a standard RGB
camera under a diffuse light source. 15 surface tactile phys-
ical properties are measured with the Biotac Tactile sensing
device. The Biotac Tactile Sensor has three sets of indepen-
dent sensors. When the Biotac core is in contact with a sur-
face, multiple tactile signals are recorded and calibrated to
output 15 tactile physical properties.

4.2. Comparison and Ablation Study
To ensure a fair comparison with the method validated in [16],
we follow the experimental setup described in[16] and ran-
domly divide the 400+ visual-tactile pairs into 90/10 train-
ing/validation splits. For the comparison experiments, the im-
age from the lowest viewing point,i.e.the -45° along the roll
axis of the surface is selected as input. It can be seen from
the comparison Table 1 that our proposed single-image es-
timation method outperformed the state-of-the-art results ob-
tained in [16] on several tactile dimensions, obtaining the best
average R2 in the single-image estimation comparison task,
and the lowest MAE score in all single/multiple image exper-
iments. In addition, we implement three different models in

Table 1. The tactile estimation results(R2). The compari-
son experiment results are displayed. Red and blue text cor-
respond to the first and second best scores respectively.

Proper-
ties

Base-
line(single)[16]

DEC
(single)[16]

NVS
(multi)[16]

VB-NVS
(multi)[16] Ours

fRS 0.07 0.54 0.62 0.65 0.09
cDF 0.49 0.52 0.53 0.50 0.58
tCO 0.50 0.62 0.63 0.61 0.76
cYD 0.44 0.64 0.55 0.57 0.70
aTK −0.46 −0.07 0.02 −0.05 0.53
mTX 0.43 0.43 0.56 0.58 0.59
cCM 0.13 0.47 0.53 0.57 0.63
cDP 0.35 0.67 0.54 0.64 0.56
cRX 0.11 0.44 0.49 0.45 0.48
mRG 0.46 0.47 0.55 0.57 0.21
mCO 0.56 0.54 0.68 0.70 0.73
uRO 0.32 0.44 0.51 0.47 0.69
tPR 0.57 0.65 0.54 0.68 0.36
uCO 0.57 0.59 0.63 0.66 0.52
fST 0.53 0.59 0.64 0.61 0.54

MeanR2 0.34 0.50 0.53 0.55 0.53
MeanMAE 6.17 5.53 5.34 5.28 4.97

the ablation experiment(Table 2) to investigate the effective-
ness of each optimization module. In our ablation study, the

visual-tactile cluster fusion module has the greatest impact
on the generation results. By adding pre-trained visual-tactile
embedding clustering fusion information to the latent space
of the generator, the ability to generate cross-modal results
based on unknown input types can be improved.

4.3. Robustness Study
Considering the possible light angle deviation and complex
environment during robot operation, we conduct a robustness
study to verify the effect of angle and complex environment
on the network prediction performance. To test the effect of
angle on our model, we randomly selected images with an-
gular deviations from the training data in the range of 1°-45°
and 1°-25° to form the test set.

For the interference test, we simulate different luminance
environments, and add Gaussian noise, salt noise, pepper
noise, and salt & pepper noise to the test set respectively.
The results are shown in Table 2. In general, the experiments
show that our model is robust to illumination, viewing angles
and noisy environments.

Table 2. The tactile estimation results(R2). The ablation
and robustness experiment average results are displayed. For
R2 metric, higher values are better. For MAE and FID, lower
values are better. Bolded text indicates the best score.

MeanR2 MeanMAE FID

w/o Lfm 0.44 5.60 33.84
w/o Lest 0.48 5.47 32.05

w/o Cluster fusion 0.09 7.81 54.80
lighting↑ 0.49 5.11 24.28
lighting↓ 0.49 5.16 27.91

Gaussian noise 0.44 5.83 30.70
salt noise 0.44 5.65 25.80

pepper noise 0.44 5.59 30.12
s&p noise 0.49 5.34 30.33

angle(1°-45°) 0.39 6.18 27.11
angle(1°-25°) 0.47 5.54 24.45

Ours 0.53 4.97 24.28

5. CONCLUSIONS

In this work, we propose a method of imaging predictive
physical tactile properties based on a GASF encoder. Finding
and understanding the connection between visual and tactile
information is a challenging task. The experiment results
show that the prediction ability of our model is superior to
all comparison methods. Ablation research is conducted to
reveal the effectiveness of cluster fusion and feature match-
ing methods. The robustness study shows that our method
is robust to changing environments and noise disturbances.
Our method can be potentially applied to a variety of robot
operation tasks with the adaptation to the disturbed working
environment.
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