
22

Interactive Sketch-Based Normal Map Generation with
Deep Neural Networks

WANCHAO SU, City University of Hong Kong
DONG DU, University of Science and Technology of China and City University of Hong Kong
XIN YANG, Dalian University of Technology and City University of Hong Kong
SHIZHE ZHOU, Hunan University and City University of Hong Kong
HONGBO FU, City University of Hong Kong

Generator Network Generated Normal MapsInput Sketches Shading Effects

Fig. 1. The overall workflow of our method. Our proposed generator network converts individual input
sketches into corresponding normal maps with little or no user intervention. Here we use RGB channels to
represent 3D normal components. The generated normal maps benefit various applications such as surface
relighting, texture mapping, etc. For instance here we use the normal maps for Phong shading.

High-quality normal maps are important intermediates for representing complex shapes. In this paper, we
propose an interactive system for generating normal maps with the help of deep learning techniques. Utilizing
the Generative Adversarial Network (GAN) framework, our method produces high quality normal maps
with sketch inputs. In addition, we further enhance the interactivity of our system by incorporating user-
specified normals at selected points. Our method generates high quality normal maps in real time. Through
comprehensive experiments, we show the effectiveness and robustness of our method. A thorough user study
indicates the normal maps generated by our method achieve a lower perceptual difference from the ground
truth compared to the alternative methods.

CCS Concepts: • Computing methodologies → Shape representations; Image representations; • Human-
centered computing → User centered design;

Additional Key Words and Phrases: Sketch, Normal Map, Point Hints, Generative Adversarial Network,
Wasserstein Distance

Authors’ addresses: Wanchao Su, City University of Hong Kong, wanchao.su@my.cityu.edu.hk; Dong Du, University of
Science and Technology of China, City University of Hong Kong, dongdu@mail.ustc.edu.cn; Xin Yang, Dalian University of
Technology, City University of Hong Kong, xinyang@dlut.edu.cn; Shizhe Zhou, Hunan University, City University of Hong
Kong, shizhe@hnu.edu.cn; Hongbo Fu, City University of Hong Kong, hongbofu@cityu.edu.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2009 Association for Computing Machinery.
2577-6193/2018/5-ART22 $15.00
https://doi.org/10.1145/3203186

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

https://doi.org/10.1145/3203186

22:2 W. Su et al.

ACM Reference Format:
Wanchao Su, Dong Du, Xin Yang, Shizhe Zhou, and Hongbo Fu. 2018. Interactive Sketch-Based Normal Map
Generation with Deep Neural Networks. Proc. ACM Comput. Graph. Interact. Tech. 1, 1, Article 22 (May 2018),
17 pages. https://doi.org/10.1145/3203186

1 INTRODUCTION
Normal maps take crucial parts in both academic research and commercial production. It is of
great importance for many graphics applications such as shape reconstruction, surface editing,
texture mapping and realistic surface rendering etc. Surface normal map is high-order differential
information of the shape, and thus is not easy for human to infer accurately in the early stage of
design process. Moreover, manually designing normal maps is a tedious process and often requires
a lot of resource input to get high-quality results. For delicate shapes, manual methods are more
problematic especially for novice designers due to the shape complexity. In commercial production,
professionals often spend hours to manually generate a detailed normal map, greatly limiting the
production efficiency.

Among various representations, the sketch is an intuitive representation for designers to convey
design concepts due to its diversity, flexibility, concision and efficiency. It is also a commonly
adopted medium to present shapes and other geometric information. Using sketches to convey 3D
information in 2D domain is a natural approach that people often employ. Since surface normals
are one of the most direct ways to encode 3D information, sketch-to-normal is a predominant
interpretation projecting the 2D concept to 3D space, which has been widely used in cartoon
shading, digital surface modeling, gaming scene enhancement and so forth. Automatically inferring
normal maps from sketches can potentially lead to a useful tool for graphics designers.
In recent years, the research community has witnessed the great capability of deep neural

networks in various areas. Deep neural networks have become the common solutions behind
many problems, especially for image-related conundrums. Specifically, GAN-based methods have
presented a superb performance on a series of image generating problems. More concretely, for
guidance-based image generation, GANs show remarkable improvements comparing with conven-
tional deep learning methods. Since both normal information and sketch curves are well represented
in the image domain, the inference from sketches to normal maps can be achieved with adoption
of deep neural networks.

In this paper we present an interactive generating system, using a deep neural network framework
to produce normal maps from input sketches. In our system, the sketch-to-normal map generation
problem is treated as an image translation problem, utilizing a GAN-based framework to “translate”
a sketch image into a normal map image. To enhance the correspondence between the input
sketches and the generated normal maps, we incorporate a conditional GAN framework, which
generates and discriminates images with the conditional guidance [Mirza and Osindero 2014]. A U-
net [Ronneberger et al. 2015] architecture is applied in the Generator to pass a smooth information
flow in the generating process, further increasing the pixel-wise correspondence. We employ the
Wasserstein distance in our implementation to provide more effective guidance to update the
network and reduce the instability of the training process.
Since a sketch is a highly simplified representation of shapes, there might be multiple shape

interpretations or possible normal maps for a single input sketch. We rely on users to resolve this
ambiguity problem. To achieve this, we provide a user interface so that users can give the normal
information at specific points directly in the input sketch to guide normal map generation. Such an
interface also enlarges the design choice of normal maps. Our system is efficient and generates the
normal maps according to the input sketch and point hints in real time.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

https://doi.org/10.1145/3203186

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:3

We demonstrate the effectiveness of our method on a wide range of comparisons in both
quantitative and qualitative experiments.We show the superb capability of ourmethod in generating
low-error normal maps by comparing it against alternative methods, including pix2pix [Isola et al.
2017] and Lun et al.’s [Lun et al. 2017], evaluated on three categories of data. We validate the user
interactivity by progressively increasing the point hints, and evaluate the robustness of our method
by an experiment with incremental variations of input sketches. From completely new hand-drawn
sketches our method can produce plausible results as well. The user studies further prove the
advantages of our method in the perspective of user perception.

2 RELATEDWORK
2.1 Sketch-Based Modeling
Sketch-based modeling is an active research area, and many researchers have devoted to this
field and presented fruitful works [Olsen et al. 2009]. Specifically, reconstructing 3D shapes or
intermediates from sketches has been well studied for years but has still been drawing much
attention from both computer graphics and vision researchers due to its ill-posed problem nature
and the challenges (e.g., severe shape distortion of sketches especially by users without drawing
training).
Traditionally, researchers defined comprehensive rules to turn 2D sketches into 3D shapes.

For example, Lumo proposed by Scott F. Johnston [Johnston 2002] approximates lighting on 2D
drawings based on silhouettes and internal contours. Wu et al. [Wu et al. 2007] proposed an
interactive system to generate 3D shapes with strokes in the reference shapes. Shao et al. [Shao et al.
2012] utilized the cross-section lines to infer the 3D normal across the input sketch. Xu et al. [Xu
et al. 2015] introduced an interactive method for designing a normal map from a 2D isophotes
image. Sýkora et al. [Sýkora et al. 2014] proposed Ink-and-Ray, generating a “2.5D” intermediate for
illumination renderings based on hand-drawn images using a set of annotations. Li et al. [Li et al.
2017] proposed BendSketch, defining a set of rules to convert 2D strokes into 3D surfaces. Other
methods enable the creation of surfaces by exploiting geometric constraints for specific types of
line drawings, such as polyhedral scaffolds [Schmidt et al. 2009] and curvature flow lines [Pan et al.
2015]. Different from the above methods, we do not need explicit rules to encode the geometric
information into the user input. Instead of generating an inflation-like intermediate shape, the
network learns the potential rules from the sketch domain to the normal map domain directly,
which preserves more geometric features and generates more complex shapes.

With the development of deep learning techniques, learning basedmethods have become effective
tools in solving shape synthesis problems. Utilizing the powerful inference capability of the deep
neural networks, many problems are solved easily. For example, Lun et al. [Lun et al. 2017] used
multi-view sketches as input to generate depth maps and normal maps, and then combine them to
generate a 3D model. Han et al. [Han et al. 2017] proposed a system to encode 2D sketch lines to
modify the averaged face representation for generation of detailed face models. While our method
directly converts the sketches into the normal maps to represent shapes with no assistance of other
geometric intermediates. Similar to the normal map generation procedure of Lun et al.’s [Lun et al.
2017], we aim at generating delicate normal maps to encode detailed geometric information from
sketch inputs. However, Lun et al.’s [Lun et al. 2017] method generated normal map together with
depth map and binary mask, which leads to inaccuracies compared to our single-objective normal
map generation.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:4 W. Su et al.

2.2 Image Translation
Traditional image translation effects are achieved by mechanisms based on handcrafted separate
local image representation, e.g., image quilting [Efros and Freeman 2001], image analogies [Hertz-
mann et al. 2001], image denoising [Buades et al. 2005], etc. Efros and Freeman [Efros and Freeman
2001] utilized a texture synthesis model for a corresponding input-output image pair. Hertzmann
et al. [Hertzmann et al. 2001] proposed image analogies, which are based on a simple multiscale
auto-regression to generate filtered images. (Deleted previous reference [9]) More advanced ap-
proaches use a dataset of input-output example pairs to learn a parametric translation function
using generative adversarial networks (GAN) [Goodfellow et al. 2014].
Mirza and Osindero [Mirza and Osindero 2014] proposed Conditional GAN (CGAN), adding

additional information to the random noise to generate images. Improved GAN by Salimans et
al. [Salimans et al. 2016] employed feature matching and minibatch discrimination to improve
the output. Iizuka et al. [Iizuka et al. 2017] presented a GAN-based method for image completion,
and used a Dilated Convolution implementation in their completion network. Recently, three
works DualGAN [Yi et al. 2017], CycleGAN [Zhu et al. 2017] and DiscoGAN [Kim et al. 2017]
were published nearly at the same time, generating images in a bi-directional loop and ensuring
the correspondence of images between the two representing domains. Laplacian Pyramid GAN
(LAPGAN) [Denton et al. 2015] and StackGAN [Zhang et al. 2016b] proposed to generate images
in a hierarchical manner. Using an Encoder-Decoder architecture, Wu et al. [Wu et al. 2016], Choy
et al. [Choy et al. 2016] and Yan et al. [Yan et al. 2016] proposed networks to generate 3D shapes in
a voxelized representation with a latent space vector encoded from real object images.
For surface normal representations, Eigen and Fergus [Eigen and Fergus 2015] and Wang et

al. [Wang et al. 2015] proposed convolutional deep networks to solve the surface normal prediction
problem as a regression from a real scene photo input. Different from [Eigen and Fergus 2015]
and [Wang et al. 2015], our method generates normal maps for detailed object models instead of
normal maps for coarse scenes surfaces or semantic labels for scene understanding. Isola et al.
presented pix2pix [Isola et al. 2017], providing a general framework for image-to-image translation,
which has a very similar objective to our work, converting images from an input representation to
the a desired representation. Our method, specifically, convert the input sketches to normal maps
with deep neural networks in the manner of image-to-image translation just like pix2pix [Isola
et al. 2017].

3 METHOD
Both normal maps and sketches can be well-represented in 2D images. We thus treat the normal
map generation problem as an image-to-image translation process. Essentially, the objective of our
image-to-image translation is the distribution transformation problem in two image representation
domains, so we choose a GAN framework for solving this problem in our method. In Section 3.1, we
introduce the objective function in our method. Our network architecture is elaborated in Section
3.2 and illustrated in Fig. 2. The idetails of the user interaction are presented in Section 3.3.

3.1 Objective Function
While conditional GAN (CGAN) [Mirza and Osindero 2014] maps a random noise vector z to an
image y : z → y, we use a conditional GAN that learns a mapping from a sketch image x and a
noise vector z, to a normal map y:

G : x , z → y. (1)
Using the conditional setting, the data distributions that generator G and discriminator D try to

approximate become conditional distributions [Mirza and Osindero 2014]. In CGAN, the additional

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:5

information is concatenated with the random noise vector in the input layer. As to the image
translation problems, feeding G with the input image that guides the network to generate the
output image is quite intuitive and it is an effective way to incorporate the sketch information in
our method. Following [Mirza and Osindero 2014], we define our objective function as follows:

min
G

max
D

V (D,G) = Ex∼ps ,y∼pn [logD(y | x)]

+Ex∼ps ,z∼pr [log(1 − D(G(z | x)))].
(2)

Here, x represents the input sketch image,y is the corresponding normal map and z is the random
noise vector with the same dimension as the latent space added to Generator G, and here ps , pn and
pr represent the sketch domain, normal map domain and random noise distribution, respectively.

In the original GAN, the objective for G is: Ez∼pr [log(1 − D(G(z)))], but this function causes
gradient vanishing. To solve the problem, the loss function can bemodified as: Ez∼pr [− log(D(G(z)))],
making G maximize the possibilities of generated samples being identified as real [Goodfellow et al.
2014]. However, Arjovsky and Bottou [Arjovsky and Bottou 2017] proved that optimizing such an
objective function is equal to minimizing Kullback-Leibler divergence (KLD) while maximizing
Jensen-Shannon divergence (JSD), but in fact, KLD and JSD are of the same direction.
Since JSD and KLD are incapable of measuring the input and output distributions for GAN

training, we adopt the settings of WGAN [Arjovsky et al. 2017], which uses the Wasserstein
distance as the measurement of distributions to improve the objective function. The objective
function in Eq. 2 then becomes:

L = Ex∼ps ,y∼pn [D(y | x)] − Eỹ∼pд [D(ỹ | x)]

−λL1LL1 − λmaskLmask ,
(3)

where ỹ is the generated normal map with respect to the input sketch x from the generated normal
map domain pд . The previous methods of GANs have found that it is beneficial to mix the G loss
with a traditional loss, for instance, L1 or L2 loss, etc [Pathak et al. 2016]. Thus, we add another
two parts, LL1 and Lmask (in Eq. 6) to further regulate the training process:

LL1 = Ey∼pn,ỹ∼pд [∥y − ỹ∥1], (4)

ỹ = Ex∼ps ,z∼pr [G(z | x)]. (5)

For user-specified normals at certain points, we add a mask loss to further ensure the input
information passes to the output (see more discussions in Section 3.3). Here we choose L1 loss since
L2 loss encourages blurry results [Pathak et al. 2016] [Zhang et al. 2016a]. L1 loss measures the
difference between the generated image and the real image, and mask loss focuses more on the
user selected pixels’ distances.

3.2 Network Design
The implementation of our network structure is illustrated in Fig. 2. We first concatenate the sketch
image (3-channel RGB image) with a binary point mask (indicating position of user-specified hints,
1-channel image), resulting in H (heiдht) ×W (width) × 4 dimensional input, and then feed the
stacked input into the Generator (16-layer network). For discriminator (4-layer network), each
layer consists of convolution, batch normalization and leak ReLU unit to process the data flow. For
generator G, we adopt an Encoder-Decoder architecture [Hinton and Salakhutdinov 2006], which
is a common choice for many image-based problems, to first extract the input information and then

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:6 W. Su et al.

Sample of Training Data

(4)

Generator G

Real or Fake

Discriminator D

Data Flow

Intermediate
Normal Map

(1)

(3)

(2)

128

64

64

64

64 128

128 128

3

256

32 32

256 256
512 512

512 512

512 512
512 512

512
16 168 84 42 2

1

128
64

32
16

64

128

256

512

Fig. 2. Network structure of our method. On the left of the figure is a sample of training data, which
contains a sketch input image, a point mask and a ground truth normal map. For selected points, we set their
corresponding values to 1 in the mask (2) and copy the corresponding point normals from the normal map (3)
to the sketch (1). We concatenate the sketch input (1) and point mask (2) as the input of the Generator G to
get the intermediate normal map (4), and then feed the intermediate normal map together with the sketch
and mask as the input of Discriminator D to verify the pixel-wise “realness” of the intermediate normal map
(4) compared to the ground truth (3). The discriminating information guides the Generator G to update its
parameters in the training stage. In testing, sketch input and point mask are fed to Generator G only, whose
output is exported as the final generated normal map. The number above or below each layer block indicates
the number of layers and the number on the left of each block denotes the spatial size of the corresponding
network layer.

infer and output the normal information based on the extracted low-dimensional representation of
the input.
The input passes through progressively down-sampling layers to a bottleneck layer, and after

we add a random noise vector the up-sampling process begins. All the input information passes
through all layers in the network. The encoder component of the generator is similar to the
settings of discriminator D, while the decoder layers are composed of ReLU, deconvolution, batch
normalization and dropout unit. After the encoder and decoder processing, we add a Tanh function
to generate the final results. For the network training, we use the RMSProp optimizer in our
implementation.

Although the low-level details differ in input and output, the high-level structure is aligned, and
that is taken into consideration when we design the network. For image translation problems, it
would be desirable to pass the low-level information across the layers to guide the generation [Isola
et al. 2017]. Thus we incorporate the U-Net [Ronneberger et al. 2015] in G. Specifically, connections
are added after the batch normalization in the generator G between each layer i and layer n − i ,

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:7

where n is the total number of layers in G. Each skip connection simply concatenates all channels
at layer i with those at layer n − i .

3.3 User Interaction
To incorporate user point hints, two additional losses are added together with the Wasserstein
loss in Eq. 3 to further regulate the generation of the results. Users can directly assign a normal
direction to a specific point in the input sketch with our user interface as shown in Fig. 3. The
selected point with the normal information (assigned RGB color) is added to the sketch input, and
the binary mask at the corresponding point is set to one. In every iteration of the training process,
after the initial mask and the sketch are passed through the Generator, we can get a generated
pre-result, and then replace the values of the masked positions with the user-specified hints in this
pre-result to ensure not only the point positions but also its neighboring area present the specified
normal.

Fig. 3. Our user interface. Users can select the positions in the drawing pad (right) and assign desired normals
to them using the normal space (left).

We then smooth the mask with a Gaussian kernel to ensure the neighboring pixels correspond
to the point hints. For the mask loss, we first differentiate the generated image and real image in L1
manner, then pixel-wisely product (⊙ in Eq. 6 below) the residual image with the filtered mask,
and finally get the average input point loss of the generated result. The mask loss is formulated as:

Lmask =
1∑
mask

Ey∼pn,ỹ∼pд [∥y − ỹ∥1 ⊙mask]. (6)

To simulate the user-specified normals at certain points in preparation for the training data, we
adopt the method in ideepcolor by Zhang et al. [Zhang et al. 2017] For each image, the number of
input points is generated by a geometric distribution with probability p = 1

8 . Each point location is
sampled from a 2D Gaussian distribution with µ = 1

2 [H ,W]T , Σ = diaд([(H2)
2
, (W2)

2
]) of the normal

map area (i.e., non-white pixels), where H andW are the height and width of the normal map. To
ensure the generated normal maps have clear boundaries, we also draw point hints from another
geometric distribution with probability p ′ = 1

2 in the non-normal region (i.e., corresponding to
white pixels). Adding the point hints not only enables interactive control of normal maps but also
accelerates the network convergence procedure since the normals at the user-specified points act
as additional guidance in the training stage. An example of the training data input is illustrated on
the left of Fig. 2.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:8 W. Su et al.

low

high

Fig. 4. Examples of generated normal maps using our method. On the upper right of each group is the sketch
input, and on the lower right is the corresponding error map compared to the ground truth. We visualize the
angular losses of the generated normal maps, here the red channel corresponds to the error of the generated
normal map, and white is zero error.

4 EXPERIMENTS
To get the corresponding sketch images and normal maps, we adopt suggestive contours [DeCarlo
et al. 2003] proposed by DeCarlo et al. to generate line drawings directly from a 3D model under
multiple views and render its corresponding normal maps. The 3D shapes we use to generate the
training and testing data in the following experiments areChair and FourLeдs from Kalogerakis et
al. [Kalogerakis et al. 2010] since they have complicated geometry and structure, and are represen-
tative man-made and organic models, respectively. FourLeдs contains 24 models (19 for training
and 5 for testing) and Chair consists of 20 models (16 for training and 4 for testing). We first make
the 3D models’ orientation upright, then rotate them horizontally and evenly sample 72 views for
each model in a circle change for both training and testing models. We repeat the above process
with a altitude angle of 25° of the upright models to enlarge the dataset. In addition, we construct a
dataset of primitive shapes, containing 50 basic 3D shapes (rotate with altitude angles of 0°, 30° and
60°, resulting in 216 views for each model since representative perception of the primitive models
are in all directions) for evaluations. The images for training and testing are 256× 256 pixels in size.
It takes about one day to train the network (FourLeдs: ∼ 28hrs , > 1300 images; Chair : ∼ 26hrs ,
> 1100 images). In the testing phase, it takes 0.025s to generate one normal map using our network
on average.
We illustrate some results of the testing models with the same view angles as the training data

in Fig. 4. We can see that our method produces results with clear boundaries and smooth normal
textures. We also plot the error maps of the results compared to the ground truth normal maps.
Converting to degree value, our method achieves loss at pixel-wised 1.9° on average for testing
results. The largest errors often appear in the boundary and the sudden change of normal within a
smooth area.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:9

Using the Chair and FourLeдs datasets we compare our method with two closely related works:
pix2pix [Isola et al. 2017] and Lun et al.’s [Lun et al. 2017], since they have similar objectives to ours.
We train the pix2pix [Isola et al. 2017] models with the same set of sketch-normal map image pairs
and set Lun et al.’s [Lun et al. 2017] output view number to 1 to generate single view results instead
of multi-view ones. In this experiment, we incorporate no additional user input for both training
and testing. We compare the test results in a quantitative way: we compare the difference between
the results by different methods against the ground truth using three metrics: L1, L2 distance and
angular difference. The quantitative comparison results are presented in Table 1.

Table 1. Errors of different methods. We compare the generated results by pix2pix [Isola et al. 2017], Lun et
al.’s method [Lun et al. 2017] and ours to the ground truth normal maps. The values here are the averaged
pixel-wise differences of the normal areas in the generated images (256 × 256 pixels).

Dataset Loss Type pix2pix Lun et al.’s Ours

Chair
Angular 21.270° 29.765° 11.517°

L1 0.235 0.307 0.154
L2 0.179 0.242 0.105

Four Legs
Angular 36.253° 35.236° 19.649°

L1 0.393 0.379 0.254
L2 0.294 0.278 0.171

We use the mask of the ground truth to prune the background (non-normal) area out and calculate
the error within the object (normal) areas, since we care about the accuracy of the normal map
of a sketched object. We first normalize the output normal maps to unit length and compute the
pixel-wise angular difference (in degrees) against the normalized ground truth normal maps. For
the pixel-wise L1 and L2 losses, we simply calculate the differences between the corresponding
normal vectors of the normal regions in the manner of L1 and L2 norms, respectively.

Our method uses the Wasserstein distance, leading to lower errors than pix2pix [Isola et al. 2017],
which uses the original GAN loss. The Wasserstein distance can effectively guide the network
to convergence. Lun et al.’s network [Lun et al. 2017] uses L2 distance as a part of objective loss
that produces blurry results, and causes larger errors than ours. In Table 1, we can see that our
method outperforms the other two, and has significantly lower errors. Through paired samples
t-test for individual averaged error values per image in the test dataset by three methods (same
errors reported in Table 1), we confirm our method significantly (Chair : pix2pix vs. ours: t = 13.94,
p < 0.01; Lun et al.’s vs. ours: t = 23.19, p < 0.01. FourLeдs: pix2pix vs. ours: t = 22.77, p < 0.01;
Lun et al.’s vs. ours: t = 27.87, p < 0.01.) reduces the error values in the generated normal maps.

To further show the difference between the results by different methods, we visualize the error
maps of different methods in a box plot of 144 views of each testing models in the FourLeдs dataset
in Fig. 5. In addition, we also choose 3 testing error maps to illustrate the different error levels in
Fig. 5. From the box plot, we can see that the errors of our method are more concentrated compared
to pix2pix [Isola et al. 2017] and Lun et al.’s [Lun et al. 2017]. Our method achieves a more subtle
difference from the ground truth. While the averaged pixel-wise error values in Table 1 are very
small, from the error maps in Fig. 5, we can easily perceive visual difference between the error maps
by different methods. Our method achieves better performance in generating smooth normal maps,
especially for the complex boundary areas. See the supplemental materials for more generated
results using different methods.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:10 W. Su et al.

pix2pix[14] Lun et al.’s[19] Ours

A
ve

ra
ge

 P
ix

el
-W

is
e

A
ng

ul
ar

 L
os

s

0

10

20

30

40

50

60

70

80

Fig. 5. The visualization of average pixel-wise angular loss using different methods. The box plot shows the
distribution of error values of different methods. From the test results we choose three views of different
testing models as examples to visualize the losses. Error maps marked by different color rectangles are
generated by the corresponding methods. The average angular losses are in degrees.

We run a validation experiment to test how our method is robust against the changes of view
angle. We train the network with the FourLeдs and Chair dataset described above. In the test
stage, we experiment on the test models under different altitude angles (from 0° to 330°), and
same horizontal sampling scheme as the training data. We also evaluate the cross-class generation
capability of our framework by training the network using one dataset or a combination of the two
datasets, but testing on the other dataset model. The results are illustrated in Fig. 6.
We choose two models from the Chair and FourLeдs test models. Each of them are rendered

with different altitude angles. From the curves in Fig. 6, it can be seen that with the increase of the
altitude angles, the error values first go up, after reaching a peak, the values decrease gradually
generally for all the three networks trained using different data, due to the used two altitude angles
(0° and 25°) for rendering the training data and the periodic nature of angle. In other words, generally
if the underlying viewpoints of the input sketches are closer to those used for rendering training
data, the inferred normal maps are more accurate. It is expected that using the same category of
data for training and testing leads to the best results (the red dashed curve and the blue solid curve).

In contrast, applying the network trained on the cross-class dataset to a test model causes more
severe errors, though the reconstructed normal maps still roughly reflect the desired shape (i.e. the
red solid line and dashed blue line in Fig. 6). It is encouraging that combing multiple categories
of objects in training does not significantly influence the reconstruction accuracy. It can be seen
from Fig. 6 that the difference between the red dashed curve and green dashed curve are nearly
unnoticeable. The same trend also appears in the blue solid and red solid lines of altitude angles
within [0°, 60°]. In the future we plan to train a network by using a large number of object categories
as the training data so that the same trained network can be applied to sketches of different
categories. Our current experiment results show that the training with multiple object categories
does not require additional training time. More testing results are illustrated in the supplementary
materials.
To test the effectiveness of the user-specified point hints, we train the network with a random

selection scheme of point hints as mentioned in Section 3.3 and evaluate the performance in terms

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:11

0

2

4

6

8

10

12

14

16

18

0 30 60 90 120 150 180 210 240 270 300 330

A
ve

ra
ge

 P
ix

el
-W

is
e

A
ng

ul
ar

 L
os

s

Altitude Angle

Chair(test)-Chair(train) Chair-Four Legs

Chair-Combination of Chair and Four Legs Four Legs-Chair

Four Legs-Four Legs Four Legs-Combination of Chair and Four Legs

Fig. 6. Evaluation against different viewpoints and networks with different training data. The solid lines
correspond to the test results with Chair data and the dashed lines illustrate the test results of Four Legs
data. The blue and red curves represent the results using the networks trained with the Chair and Four Legs
datasets, respectively. The green lines denote the results by the network using a combination of Chair and
Four Legs as the training data. The normal maps with different color frames are the testing results using the
networks with specific rotation angles. The angular loss for each generated result is calculated across the
whole image.

of the number of point hints. The evaluation results are illustrated in the curve chart in Fig. 7 for
the averaged accumulated angular losses with respect to the normal areas for each normal map.
The blue curve represents the results of normal maps with randomly selected points in the normal
map area, and the red line indicates the results of points selected with respect to the top N (the
number of input points) largest error points in the corresponding error maps. We get the error
maps by comparing the ground truth normal maps to the generated normal maps from the clean
sketch image (with no user-specified point hint) input. We anticipate users will specify normals at
points with the large errors between the currently generated normal map and a desired normal
map in their minds.

The data in Fig. 7 is generated using a test Chair model with 144 different views. The values in
Fig. 7 are the average of the 144 views in each group, we can see that generally the loss values
in both the red and blue lines go down with the increase of the numbers of point hints, which
validates that our system generates better normal maps with the incorporation of user input hints.
From the inclinations of the two curves we can know that selecting points with larger loss values

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:12 W. Su et al.

57500

58000

58500

59000

59500

60000

60500

61000

0 5 10 15 20

A
cc

u
m

u
la

te
d

 P
ix

el
-W

is
ed

 A
n

g
u

la
r

L
o
ss

Number of Input Points

Random Select Select with High Loss Value

Fig. 7. The evaluation of the point hints. Generally the more point hints we use the more accurate normal
maps we can get. A more careful selection of point hints (at the points with the largest errors) will lead to
desired results more quickly.

more effectively reduce the generated errors. From the shape of the red line, we can see that the
error value will remain a relatively constant low level after the large error region is eliminated.

As shown in Fig. 8 we also evaluate our tool with respect to the incremental changes of the input
sketch. From the results we can see that our system responds well with the modification of the
strokes. When we add an additional stroke in the sketch input, the resulting normal map shows
the corresponding details. On the contrary, when we remove a stroke from the input sketch, the
geometric details will be smoothed out in accordance with sketch modification. More results of the
modification in sketches are presented in the supplemental materials.

We also test our method with completely new sketches provided by both experts with drawing
skills and novices in sketching in all the three classes of datasets. Several hand-drawn sketches
and corresponding generated results are shown in Fig. 9. The normal maps in Fig. 9 preserve the
characteristics of the training datasets, showing smooth normal areas and strong correspondence

input

output

add 1 add 2 add 3original

Fig. 8. Incremental refinement by adding additional strokes, which lead to additional geometry details in the
normal map. The modified strokes and corresponding parts in the generated normal maps are highlighted
using red circles.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:13

Input Sketches

Normal Maps

Fig. 9. Test of hand-drawn sketches. Our system can infer reasonable normal maps with completely new
sketch inputs.

with the input sketches. For completely new sketches, our system can provide plausible results with
proper training data. For more results of the freehand drawn sketches, see the the supplemental
materials.
We conduct a pilot study among 12 users regarding the user perceptual loss for the rendered

normal maps generated by different methods using Phong shader. In the first task we ask the
participants to choose the closest normal map given an input sketch and the ground truth as
reference to test the perceptual losses of the three methods, the task contains 10 sets of randomly
selected normal maps from the test models using our method, pix2pix [Isola et al. 2017] and Lun et
al.’s [Lun et al. 2017]. The results are summarized in Fig 10.

pix2pix[14] OursLun et al.’s[19]

Fig. 10. Plot of user preferences for closest normal map to the ground truth. The blue, red and green boxes
represent the distributions of the probabilities of the user choices for pix2pix [Isola et al. 2017], Lun et al.’s [Lun
et al. 2017] and our method, respectively.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

22:14 W. Su et al.

The green box in Fig. 10 shows the highest average proportion among the three methods,
achieving 57.5% in identifying the normal maps generated by our method as ones closest to the
ground truth. The average proportions for pix2pix and Lun et al.’s method are 17.5% and 25.0%.
The t-tests (Ours vs. pix2pix [Isola et al. 2017]: t = 7.22, p < 0.01; Ours vs. Lun et al.’s [Lun et al.
2017]: t = 5.96, p < 0.01) proves that our method is statistically better than the other two methods
in generating perceptually lower-error normal maps.

0%

20%

40%

60%

80%

100%

C
o

n
fu

si
n

g
 R

a
te

pix2pix[14] Lun et al.’s[19]

FakeReal

Ours Ground Truth

Fig. 11. Confusing rate for normal maps generated by 4 different methods. The red part in each bar represents
the proportion of normal maps identified as real using a specific method, and the blue part denotes the fake
rate.

To investigate the accuracy of user perception in interpreting the normal maps, we do another
user experiment of normal map confusing rate. In this experiment, we render 10 normal maps
randomly selected in the test set for FourLeдs with 4 methods: pix2pix [Isola et al. 2017], Lun et
al.’s [Lun et al. 2017], ours and the ground truth. We request the users to label if a given normal
map is real or fake in a random order. The test results are plotted in Fig. 11.
The average confusing rate (ratio of normal map identified as real) of our method is 39.17%

compared to 55% of the ground truth. The confusing rates for pix2pix [Isola et al. 2017] and Lun
et al.’s [Lun et al. 2017] are 30% and 31.7%, respectively. Our method achieves slightly higher
confusing rate than the other two methods but still lower than the ground truth. In addition,
the participants in this task give a difficulty factor of 7.08 out of 9 (1 means easiest and 9 means
hardest), indicating the efforts required in this task are quite high and people find difficult in
interpreting the rendered normal maps directly. See the individual user results and testing images
in the supplemental materials.

5 DISCUSSIONS
In sum, we have presented an interactive method for normal map generation. The implementation
of conditional GAN framework encodes sketch input to the latent representation and decodes the
latent space representation into normal map. By adopting the U-Net architecture, our network
presents a smooth data transition. The incorporation of the Wasserstein distance provides precise
gradient information for the network training process. User-specified point hints allow more direct
control of the normal map and effectively eliminate the ambiguity of the sketch representation. The
effectiveness of our technique has been demonstrated by qualitative and qualitative experiments.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:15

Our method outperforms the alternative solutions based on pix2pix [Isola et al. 2017] and Lun et
al.’s [Lun et al. 2017].

Fig. 12. Less successful cases with corresponding sketches. There are some generated results with obvious
visual artifacts: one of the legs of giraffe is disconnected, the back area of the chair is messy, the surface
normal of the sphere is not evenly distributed, and in the back region of the hand drawn chair.

Despite the good performance in many cases, our method does not perform well in certain cases.
In Fig. 12, we can see that our method produces obvious visual artifacts in complex sketch areas and
delicate areas. There are also generated artifacts with patches outside the drawn sketch containing
spuriously predicted normals. This is a common phenomenon for GAN-based methods and may
be solved by adding more user input hints. For the large area of uneven normals, we can also
consider utilizing some post-processing techniques to reduce the artifacts. Furthermore, the testing
results are highly dependent on training data, providing relatively worse results for cross-class
generation as discussed previously. For the user-specified point hints, since the normal maps are
highly structured representations of 3D shapes, users cannot arbitrarily assign a point normal far
from the potential candidates.
One of the future directions might be to explore the GAN training techniques to improve

the capability of our current networks, reducing the artifacts in the generated results. Since the
current method can only generate smooth normal maps, another potential direction can be the
post processing technique to add more details in the generated normal maps according to the user
design. Our current user interface enables user-specified point hints, it might be interesting to
incorporate the stroke-based normal assignation for more compact user interaction.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their suggestion. This work was partially funded by the
RGC of Hong Kong SAR (Project No. CityU11204014, CityU11200418), National Natural Science
Foundation of China (Project No. 91748104, 61303147), Science Foundation of Hunan Province
(Project No.2018JJ3064), the Hong Kong Scholars Program, Ministry of Education of China HPCSIP
Key Laboratory and supported by NVIDIA Corporation with the donation of the Titan Xp GPU.

REFERENCES
M. Arjovsky and L. Bottou. 2017. Towards Principled Methods for Training Generative Adversarial Networks. ArXiv e-prints

(Jan. 2017). arXiv:1701.04862

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

http://arxiv.org/abs/1701.04862

22:16 W. Su et al.

M. Arjovsky, S. Chintala, and L. Bottou. 2017. Wasserstein GAN. ArXiv e-prints (Jan. 2017). arXiv:1701.07875
Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. 2005. A Non-Local Algorithm for Image Denoising. In CVPR ’05.

60–65.
Christopher B. Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 2016. 3D-R2N2: A Unified Approach for

Single and Multi-view 3D Object Reconstruction. In ECCV ’16. 628–644.
Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. 2003. Suggestive Contours for Conveying

Shape. ACM Trans. Graph. 22, 3 (July 2003), 848–855.
Emily L Denton, Soumith Chintala, arthur szlam, and Rob Fergus. 2015. Deep Generative Image Models using a Laplacian

Pyramid of Adversarial Networks. In Advances in Neural Information Processing Systems 28. 1486–1494.
Alexei A. Efros andWilliam T. Freeman. 2001. Image Quilting for Texture Synthesis and Transfer. In SIGGRAPH ’01. 341–346.
David Eigen and Rob Fergus. 2015. Predicting Depth, Surface Normals and Semantic Labels With a Common Multi-Scale

Convolutional Architecture. In ICCV ’15.
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua

Bengio. 2014. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). 2672–2680.

X. Han, C. Gao, and Y. Yu. 2017. DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature
Modeling. ACM Trans. Graph. 36, 4 (July 2017).

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin. 2001. Image Analogies. In SIGGRAPH
’01. 327–340.

G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the Dimensionality of Data with Neural Networks. Science 313, 5786
(2006), 504–507.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and Locally Consistent Image Completion. ACM
Trans. Graph. 36, 4 (July 2017), 107:1–107:14.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image Translation with Conditional Adversarial
Networks. In CVPR ’17. 5967–5976.

Scott F. Johnston. 2002. Lumo: Illumination for Cel Animation. In NPAR ’02. 45–52.
Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. ACM

Trans. Graph. 29, 4 (July 2010), 102:1–102:12.
T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. 2017. Learning to Discover Cross-Domain Relations with Generative Adversarial

Networks. ArXiv e-prints (March 2017). arXiv:1703.05192
Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang. 2017. BendSketch: Modeling Freeform Surfaces

Through 2D Sketching. ACM Trans. Graph. 36, 4 (July 2017), 125:1–125:14.
Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and Rui Wang. 2017. 3D Shape Reconstruction

from Sketches via Multi-view Convolutional Networks. CoRR abs/1707.06375 (2017). arXiv:1707.06375
M. Mirza and S. Osindero. 2014. Conditional Generative Adversarial Nets. ArXiv e-prints (nov 2014). arXiv:1411.1784
Luke Olsen, Faramarz F. Samavati, Mario Costa Sousa, and Joaquim A. Jorge. 2009. Sketch-based modeling: A survey.

Computers & Graphics 33, 1 (2009), 85 – 103.
Hao Pan, Yang Liu, Alla Sheffer, Nicholas Vining, Chang-Jian Li, and Wenping Wang. 2015. Flow Aligned Surfacing of

Curve Networks. ACM Trans. Graph. 34, 4 (July 2015), 127:1–127:10.
Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. 2016. Context Encoders: Feature

Learning by Inpainting. In CVPR ’16. 2536–2544.
Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional Networks for Biomedical Image Segmen-

tation. In MICCAI ’15. 234–241.
T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. 2016. Improved Techniques for Training

GANs. ArXiv e-prints (June 2016). arXiv:1606.03498
Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. 2009. Analytic Drawing of 3D Scaffolds. ACM Trans. Graph.

28, 5 (Dec. 2009), 149:1–149:10.
Cloud Shao, Adrien Bousseau, Alla Sheffer, and Karan Singh. 2012. CrossShade: Shading Concept Sketches Using Cross-

section Curves. ACM Trans. Graph. 31, 4 (July 2012), 45:1–45:11.
Daniel Sýkora, Ladislav Kavan, Martin Čadík, Ondřej Jamriška, Alec Jacobson, Brian Whited, Maryann Simmons, and

Olga Sorkine-Hornung. 2014. Ink-and-ray: Bas-relief Meshes for Adding Global Illumination Effects to Hand-drawn
Characters. ACM Trans. Graph. 33, 2 (April 2014), 16:1–16:15.

Xiaolong Wang, David Fouhey, and Abhinav Gupta. 2015. Designing Deep Networks for Surface Normal Estimation. In
CVPR ’15.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. 2016. Learning a Probabilistic Latent Space of
Object Shapes via 3D Generative-Adversarial Modeling. In NIPS ’16. 82–90.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1703.05192
http://arxiv.org/abs/1707.06375
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1606.03498

Interactive Sketch-Based Normal Map Generation with Deep Neural Networks 22:17

Tai-Pang Wu, Chi-Keung Tang, Michael S. Brown, and Heung-Yeung Shum. 2007. ShapePalettes: interactive normal transfer
via sketching. In SIGGRAPH ’07. 44.

Q. Xu, Y. Gingold, and K. Singh. 2015. Inverse Toon Shading: Interactive Normal Field Modeling with Isophotes. In SBIM ’15.
15–25.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. 2016. Perspective Transformer Nets: Learning Single-View
3D Object Reconstruction without 3D Supervision. (12 2016).

Z. Yi, H. Zhang, P. Tan, and M. Gong. 2017. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation. ArXiv
e-prints (April 2017). arXiv:1704.02510

H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. Metaxas. 2016b. StackGAN: Text to Photo-realistic Image
Synthesis with Stacked Generative Adversarial Networks. ArXiv e-prints (Dec. 2016). arXiv:1612.03242

Richard Zhang, Phillip Isola, and Alexei A. Efros. 2016a. Colorful Image Colorization. In ECCV ’16. 649–666.
Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe Yu, and Alexei A Efros. 2017. Real-Time

User-Guided Image Colorization with Learned Deep Priors. ACM Trans. Graph. 9, 4 (2017).
J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. 2017. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial

Networks. ArXiv e-prints (March 2017). arXiv:1703.10593

APPENDIX
To illustrate the qualitative comparison of the generated results by different methods, we add some
of the generated normal maps in Fig. 13. We add the complete comparison result in the supplemental
materials.

pix2pix Lun et al’s Ours Ground Truth

Fig. 13. Side-by-Side comparison of results by different methods. For the complete set of testing results,
please consult the supplemental materials.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 1, No. 1, Article 22. Publication date: May 2018.

http://arxiv.org/abs/1704.02510
http://arxiv.org/abs/1612.03242
http://arxiv.org/abs/1703.10593

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sketch-Based Modeling
	2.2 Image Translation

	3 Method
	3.1 Objective Function
	3.2 Network Design
	3.3 User Interaction

	4 Experiments
	5 Discussions
	References

