
EUROGRAPHICS 2013 / I. Navazo, P. Poulin
(Guest Editors)

Volume 32 (2013), Number 2

By–example synthesis of curvilinear structured patterns

Shizhe Zhou1,2 Anass Lasram1 Sylvain Lefebvre1

1INRIA, France 2University of Science and Technology of China

Figure 1: Our synthesizer generates a consistent, aperiodic pattern along a ribbon, from an example (red). It does not produce
distortions in high curvature regions. The heart shape as well as the two right most results are closed curves.

Abstract

Many algorithms in Computer Graphics require to synthesize a pattern along a curve. This is for instance the
case with line stylization, to decorate objects with elaborate patterns (chains, laces, scratches), or to synthesize
curvilinear features such as mountain ridges, rivers or roads.
We describe a simple yet effective method for this problem. Our method addresses the main challenge of maintain-
ing the continuity of the pattern while following the curve. It allows some freedom to the synthesized pattern: It
may locally diverge from the curve so as to allow for a more natural global result. This also lets the pattern escape
areas of overlaps or fold-overs. This makes our method particularly well suited to structured, detailed patterns
following complex curves.
Our synthesizer copies tilted pieces of the exemplar along the curve, following its orientation. The result is opti-
mized through a shortest path search, with dynamic programming. We speed up the process by an efficient parallel
implementation. Finally, since discontinuities may always remain we propose an optional post-processing step
optimally deforming neighboring pieces to smooth the transitions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

Many Computer Graphics approaches require to synthe-
size textured patterns along curves. This is for instance a key
ingredient of line stylization [BCGF10, LYFD12] and struc-
ture propagation for image completion [SYJS05]. This is
also useful to synthesize curvilinear features such as moun-
tain ridges [ZSTR07], roads [GPGB11], rivers [SPK10], or
to decorate meshes with details (bracelets, necklaces, illus-
trations, hatches) [KMM∗02].

Usually, curves are texture mapped by exploiting their
parametric domain. A ribbon is created by offsetting the
curve. A texture is repeated inside while following curvature
and orientation. The texture coordinates are the arc length
parameterization and the distance to the curve. This however
results in two artifacts: First, distortions introduced by cur-
vature and second, pattern repetitions without any variation.
While strict repetition is sometimes desirable, often the user

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/cgf.12055

S. Zhou & A. Lasram & S. Lefebvre / By–example synthesis of curvilinear structured patterns

wishes a more natural, less regular aspect. Discontinuities
may also appear if the pattern is not perfectly cyclic.

Our approach solves these issues by synthesizing a texture
specifically for the curve. Distortions are avoided by work-
ing in the canvas space rather than in the parametric domain,
and the synthesizer introduces variations in the result.

Several methods are related to this problem. [SYJS05]
fills a missing part of an image by first synthesizing con-
tent along curves. Square overlapping patches are copied
along a trajectory at regular intervals. The synthesized con-
tent does not follow the orientation of the curve. Other works
synthesize content while following orientation [ZSTR07,
SPK10, BCGF10]. However, they rely on stochastic synthe-
sizers [WLKT09] which perform well on brush–like pat-
terns, but fail to preserve the geometric continuity of struc-
tured patterns.

Several approaches synthesize curves from exam-
ples [HOCS02, MM10]. This is however different from our
goal since we seek to synthesize a textured pattern rather
than a single curved line.

Painterly rendering relies on brushes applied along
curves [Her98, XLSN10], often following the silhouettes
of a 3D object on screen [NM00, GVH07]. In this con-
text, methods have also been proposed to distribute dis-
crete elements in space or along curves, following an ex-
ample [BBT∗06,IMIM08]. Helping hand [LYFD12] stylizes
a stroke by synthesizing along its trajectory a sequence of
hand pose information – velocity, pressure and orientation.
The example data is taken from a database of strokes. The
synthesized information drives a virtual brush, producing a
texture along the curve. Our problem is different: We focus
on the synthesis of a structured pattern which is likely not
the result of applying a brush along a path.

From a technical point of view our method is closer to the
works of Sun et al. [SYJS05] and Lefebvre et al. [LHL10].
Both achieve high quality synthesis of structured textures by
formulating a uni–directional problem which can be globally
and exactly optimized. This is better suited to structured pat-
terns: Because they require precise alignments, correct con-
figurations have a much lower probability than with stochas-
tic patterns.

Contributions: We propose a novel formulation for synthe-
sizing patterns along curves which operates directly in the
canvas space. Our approach produces new patterns without
distorting the example content. The output of the synthesizer
is a set of texture coordinates, and therefore does not require
to store the result as an image. We relax the synthesis process
by allowing some freedom to the pattern around the curve.
This affords for more flexibility and lets the synthesized pat-
tern exit problematic areas such as fold-overs due to strong
local curvature. We cast the optimization process as a global
optimization: a shortest path search conveniently solved us-
ing dynamic programming, and further accelerated by the

GPU. Finally, we propose an optional post–processing to re-
duce any remaining discontinuities along the result pattern.

Input exemplars, comparing pixels: The input to our syn-
thesizer is a pattern meant to be synthesized along a curve.
The input is an image with a transparent background, which
outlines the geometry of the pattern. During synthesis, when
pixels are compared a larger importance is given to the ge-
ometry of the pattern, since it is most desirable to preserve its
continuity. Therefore, there is a high penalty when matching
opaque with transparent pixels.

We compare two RGB pixels p,q with values in [0,255]3

with the following matching cost function:

ξ(p,q) =

||p−q|| if α(p) ·α(q) = 1
||p−q|| if (1−α(p)) · (1−α(q)) = 1
γ otherwise

where α(.) extracts the transparency information of a pixel
(1 if opaque, 0 otherwise). γ penalizes matching opaque and
transparent pixels. We use γ = 1024. This could be adapted
with a continuous cost in case of semi-transparent pixels. A
more elaborate matching could also be obtained by apply-
ing an appearance space transform to the exemplar prior to
synthesis [LH06].

1. Synthesizing patterns within a ribbon

1.1. Notations

Le E be the exemplar of size W ×H and C the curve along
which to synthesize. We assume a curve parameterized in
arc length and denote L its total arc length. We denote by
C(x),x ∈ [0..L] the points along the curve. Finally, we de-
note by n(x) the normal to the curve in C(x). We consider
a ribbon around the curve. The ribbon is obtained by defin-
ing a top and bottom offset curves respectively as T (x) =
C(x) + b

2 n(x) and B(x) = C(x)− b
2 n(x) with b the ribbon

width. Note that we restrict ourselves to the 2D case for clar-
ity, but the flat ribbon could also be defined in 3D. Similarly,
the width b could vary freely along the ribbon if desired.

Figure 2: Left: A synthesis result and the ribbon cage used
to synthesize it. The ribbon is sliced into pieces along its me-
dial axis. Right: Each piece of the ribbon is positioned into
the exemplar so as to produce a visually continuous pattern.
Since the left edge of each piece remains straight in the ex-
emplar, no distortion appears along the curved ribbon.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

356

S. Zhou & A. Lasram & S. Lefebvre / By–example synthesis of curvilinear structured patterns

1.2. Overview

We initiate the synthesis process by slicing the ribbon into
a number of pieces: Quadrilaterals living along the curve
and connected through their left/right edges. Our synthesizer
finds the best part of the exemplar to appear inside each piece
– this is akin to finding texture coordinates for each piece in
the exemplar. In this process, the left edge of a piece is al-
ways kept vertical in the exemplar, while we search for a
position matching colors along the tilted right edge of the
previous piece. The fact that we ’reset’ the rotation at every
piece allows the exemplar to smoothly follow the curvature.
Since the pieces always exactly copy a part of the exemplar,
there is no distortion. This process is illustrated in Figure 2.

1.3. Formulation

We generate pieces by slicing along the curve, with a sam-
pling distance δ fixed by the user. Each piece is created as
a quadrilateral with points (T (xi),B(xi),B(xi+1),T (xi+1))
for all xi = iδ with i ∈ [0..N], with N = L

δ
. For simplic-

ity we assume that N is an integer – if not, a final smaller
piece can be added to account for the frac-
tional part. We rewrite the coordinates as
(T (xi),T (xi)+ li,T (xi)+di,T (xi)+ti) where li,
di, ti are vectors computed between the top left
corner and the other corners, as illustrated in the
inset. In areas of high-curvature pieces may fold over them-
selves, the right edge crossing the left edge. This can be ob-
served in Figure 3. We treat these cases by forbidding the
pattern to appear in the folded area, using the method de-
scribed in Section 3.1. The work of Asente [Ase10] could
also be used to slice the curve without folding.

Each piece gets coordinates in the exemplar. Because we
do not stretch the pieces, only the position of the top left cor-
ner needs to be fixed. In the exemplar each piece is oriented
so that its left edge is vertical, while the right edge may be
tilted due to the curvature (see Figure 2). We note ui the co-
ordinates of the top left corner in E. We note y the vertical
direction (0,−1) and M the matrix transforming li into y. A
scaling factor s controls the relative size of the synthesized
pattern with respect to the curve.

Following these notations, we write the piece polygon in
E as (ui,ui + s · y,ui + s ·Mdi,ui + s ·Mti). We note the left
edge as Li = (0,s · y) and the right edge as Ri = (s ·Mti,s ·
Mdi). In the following, we note a translation of an edge L by
a vector u as u+L.

The set of coordinates ui are the variables of our problem.
A good selection of coordinates across all pieces will pro-
duce a continuous pattern within the ribbon. We define the
cost of a given choice of ui for all pieces as:

Ω(u0, ...,uN) =
N−1

∑
i=0
D(ui +Ri,ui+1 +Li+1)

whereD measures the distance of the colors along the edges

between pieces. ui + Ri is the right edge of piece i posi-
tioned at ui. Similarly, Li+1 is the left edge of the following
piece positioned at ui+1 in the exemplar. Ω is thus the cost of
matches for all right/left edge pairs along the curve. Closed
curves require a special treatment described in Section 1.5.

D is computed by extracting part of a column in E for the
left edge Li+1 and by sampling along the tilted right edge
Ri. We note C = d||Li||e the number of samples taken along
the edges. Two color vectors of size C are obtained. We note
these vectors R̄i and L̄i+1, and index them with the usual
array notation. The two vectors are then compared with a
sum of per-pixel matching costs:

D(ui +Ri,ui+1 +Li+1) =
C−1

∑
k=0

ξ(R̄i[k], L̄i+1[k])

An important observation which makes this optimization
much more efficient is that not all ui are valid for a piece:
In many positions the piece
either is empty, or does not
slice the pattern completely:
The top or bottom edge inter-
sects the pattern. This is illus-
trated in the inset, where only
the green position is valid. By selecting only valid positions
during the optimization we strongly reduce the search space
(typically 5% to 35% of the positions are valid).

1.4. Optimization

We optimize for the best ui by dynamic programming. We
compute a table P in which an entry P[i,u] is the best pos-
sible cost of using coordinates u for piece i. The recursive
relationship is given as:

P[i,u] = min
v
(P[i−1,v]+D(v+Ri−1,u+Li)) (1)

In this process we only consider valid positions u for piece i
and valid positions v for piece i−1. Table P is computed by
dynamic programming (DP).

Complexity The DP table is sequentially updated, row by
row, from top to bottom. The number of rows equals the
number of pieces N. At each position along each row we
search through all the positions of the prior piece (see equa-
tion 1) and compare two columns of size C. The number
of positions that a piece can take depends the exemplar size
and the column size C: In order to consider all possibilities
the top left corner of a piece may be located up to C pixels
above the exemplar. We denote the number of positions by
U =W × (H +C). The asymptotic complexity of a naive al-
gorithm is O(NU2C). This grows linearly with the number
of pieces, but grows quadratically in the number of exem-
plar pixels. This large complexity is made practical thanks to
several factors: Many computations can be parallelized, the
number of valid positions is in practice much smaller than
U , and the comparison of columns can be factored to reduce
the complexity to O(NU2). Section 2 gives further details on
how to implement the approach efficiently.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

357

S. Zhou & A. Lasram & S. Lefebvre / By–example synthesis of curvilinear structured patterns

1.5. Closed curves

Closed curves are cut at an arbitrary location and treated as
non-closed. A terminal last piece is added: It represents the
connection back to the first piece. Only solutions where the
position for the terminal piece equals the position for the first
piece are valid (cycle).

This problem is akin to using DP to find a best cut around
a patch, searching for a cyclic path in a ring [JSTS06]. Find-
ing the optimal cycle requires running several DPs, one per
choice for the start location. However, it can be well approx-
imated with a single unconstrained DP [LL12]. We follow
a similar approach and search for a cycle by backtracking
from all terminal positions after running the DP optimiza-
tion once. Figure 1 (right) illustrates synthesis along a closed
curve. Alternatively, results where the ending position is ver-
tically within a threshold of the starting position may be used
with the stitching described in Section 3.2. We did not use
this approach in our results.

2. Implementation

Our implementation is based on OpenCL and designed to
run on the GPU. The DP algorithm is as follows:

findValidPositions(0)
for (int i = 1 ; i < N ; i ++) {
extractColumns(i - 1)
findValidPositions(i)
compactValidPositions(i)
computeCostTable(i)
updateTableRow(i)

}

Each iteration of the for loop fills a row of the DP table. Each
of the function corresponds to a kernel call. The loop starts
at i = 1 since the first piece is unconstrained – unless other-
wise specified by the user. After iterating over all pieces we
backtrack from the bottom of the table to the top, effectively
finding the optimal sequence of positions of the pieces.
extractColumns samples colors along the right–edges
of piece i−1, gathering R̄i−1 for all valid positions of piece
i−1. The kernel is launched with one thread per column.
findValidPositions computes all valid positions for
the i-th piece. This involves, for each of the U possible posi-
tions in the exemplar, testing whether the piece would be
in a valid configuration. The kernel is launched with one
thread per position. The output is an array of booleans flag-
ging which positions are valid. Validity is tested by sampling
along the edges and the inside of the piece, checking that
1) the piece correctly slices the exemplar pattern (see Sec-
tion 1.3) and 2) the piece does not overlap a forbidden region
of the canvas (see Section 3.1).
compactValidPositions gathers only the valid posi-
tions for the piece with a parallel scan operation. An index-
ing array is created to remap the valid indexes in a contin-
uous, smaller table. Typically only between 5% and 35% of
the positions are valid. This offers a significant reduction in

memory and computational requirements.
computeCostTable compares all left edges of piece i at
valid positions, to the right edges of piece i−1 gathered ear-
lier. The result is a cost table containing the value ofD for all
right/left edge pairs. The kernel is launched with one thread
per column-pair, each comparing C pixels.
updateTableRow updates the DP table following Equa-
tion 1. The kernel is launched with one thread per row entry.

Discussion The most expensive step is computeCost-
Table, with a complexity of O(U2C). This can be reduced
to O(U2) by relying on a sliding accumulation window. The
error for a first pair of columns is computed in an accumu-
lation window of C pixels. The window is then moved down
by one pixel, computing the error for the neighboring pair.
This only requires removing/adding the error of the two pix-
els exiting/entering the window, canceling the C factor in the
complexity. This process however assumes a continuous im-
age when in fact we consider only valid positions, a sparse
subset of U positions. We nevertheless experimented with
this approach, comparing the exemplar and a transformed
version of it accounting for the tilted angle of the previous
piece edge. We only store the result for pairs of columns
which are on valid positions. In practice this results in a
speed-up when C becomes larger than H (a ribbon wider
than the pattern). However, in the most typical case where C
and H have similar values, the overhead is significant and the
naive comparison of columns remains more efficient. This is
due to the sparsity of the valid positions which compensates
for the overhead of the C comparisons.

3. Control

3.1. Region avoidance

Our optimizer supports region avoidance: We invalidate co-
ordinates that would make the pattern collide with forbidden
areas in the canvas. This is done by testing, for every piece
position in the exemplar, whether it makes an opaque pixel
fall within the forbidden regions. If it is the case, the position
is flagged as invalid (see Section 1.3). The forbidden regions
are described in an image which covers the entire canvas. We
call this image the avoidance map.

A specific case of region avoidance is foldovers of the rib-
bon, due to high curvature or close proximity. For these cases
the avoidance map is obtained by drawing in an off-screen
buffer, flagging regions of overdraw where the curve self-
overlaps. Problematic areas are shown in red Figure 3.

One limitation of this approach is that the foldover area
is strictly excluded, when in fact it could be used once by
the pattern. This could be partially addressed by checking at
every DP step whether the current sub–path already uses the
foldover area. However, this would be expensive to compute.

3.2. Stitching

Even though our results are globally optimal, visible seams
may remain: It is rare that the exemplar offers degrees of

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

358

S. Zhou & A. Lasram & S. Lefebvre / By–example synthesis of curvilinear structured patterns

freedom allowing for perfect matches between pieces. In ad-
dition, a straight exemplar necessarily produces discontinu-
ities when synthesized along a curve; the tilted edges have a
different length than the vertical edges.

We further improve the results by deforming the pieces.
We compute an optimal alignment of the right edge of piece
i with the left edge of piece i+ 1. The deformation is then
propagated to the piece interior. Figure 4 compares a result
without and with stitching.

Alignment: We compute a remapping of the indexes of the
pixels along the right edge so that they better match those
along the left edge. This is done by computing a table M so
that M[s, t] contains the best possible cost resulting of having
pixel t of the right edge in front of pixel s of the left edge.
The table is computed by dynamic programming with the
following recursive relationship:

M[s, t] = min

M[s−1, t−1]
M[s−1, t]+β(L̄i+1[s], R̄i[t])
M[s, t−1]+β(L̄i+1[s], R̄i[t])

+||L̄i+1[s]− R̄i[t]||

(2)

where β(., .) penalizes the distortion of opaque segments:

β(L,R) =

P if α(L̄i+1[s])> 0
P if α(R̄i+1[s])> 0
0 otherwise

(3)

In practice we use P = 32 (RGB colors are within [0,255]3).

By backtracking in M we obtain an array remapping the
pixel indexes along the right edge. We note this array T . In
absence of deformation, T [i] = i. We compute all tables for
all pieces in parallel, each GPU thread handling one piece.

Propagation: To obtain a continuous deformation we inter-
polate from the edge to the inside of the piece. This is done
during rendering by the pixel shader and requires no other
storage than the arrays T of the pieces.

The principle for propagating the deforma-
tion is illustrated in the inset. u,v and w are the
direction vectors of, respectively, the top, bot-
tom and right edges. Since we are working in
the exemplar space, the left edge is vertical (see
Section 1.2). Our goal is to compute a deforma-
tion of the texture coordinates at the sampling

Figure 3: A chain is synthesized while avoiding foldovers
and overlaps (in red).

Figure 4: Left: Straight patterns produce discontinuities in
curved regions. Right: Our stitching step removes most of
the discontinuities at little memory overhead during display.

Figure 5: Top left: Structured exemplar. Bottom left: Re-
sult of Bénard et al. [BCGF10]. Note the loss of continuity
in the pattern. Right: Part of our result along a curve.

point p. We first interpolate the direction d from u and v, us-
ing the vertical position of p. We then project p along d onto
the right edge. This computes the distance i along the edge.
We use this distance to obtain a deformation as ∆ = T [i]− i.
The final deformation to the texture coordinates is x

x+r ·∆ ·w.
The term x

x+r controls the strength of the deformation be-
tween the left/right edges: The deformation is largest along
the right edge, and has no influence along the left edge.

4. Results

Figures 1 and 7 show a variety of results for different pat-
terns. Note how the pattern continuity is preserved even in
high-curvature areas. The synthesized patterns also exhibit
variety along the curve, producing a more natural result than
a strict repetition. Figure 5 shows a comparison with the
scheme of Bénard et al., for the case of a structured pattern.

All results are obtained on a NVidia GeForce GTX 580.
Adding a piece to the curve – computing one row of the DP
table – takes from 30 ms to 650 ms for exemplar sizes of re-
spectively 199× 82 and 325× 64. Overall performance for
a curve depends on the number of pieces. Our results took
between a few seconds and 30 seconds. Figure 4 illustrates
the performance behaviour when increasing the number of
pieces or the exemplar width. This is consistent with the
asymptotic complexity (Section 1.4).

Limitations: A difficulty inherent to our formulation is the
dependency of the result on the length δ and width b of the
pieces. In particular, short pieces can quickly lead to unde-
sirable repetitions. This could be avoided through histogram
constraints [LHL10]. We do not strictly enforce continuity:
The optimizer may choose to break the pattern in difficult
situations. Strictly enforcing continuity however can quickly
exhaust all possible solutions. This is an area for further
study. The computational cost currently limits the maximum
resolution of the exemplar. However, it is possible to opti-
mize at a low resolution and reuse the results on higher res-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

359

S. Zhou & A. Lasram & S. Lefebvre / By–example synthesis of curvilinear structured patterns

Figure 6: Left: Performance (ms) versus number of pieces
(N), with W ×H = 156×64 and b = 90. Note the linear be-
havior. Right: Performance (ms) versus exemplar width (W).
H = 64,N = 23,b = 90. Note the quadratic increase.

Figure 7: Various synthesized patterns. Exemplars are
shown at the bottom. None of them are cyclic.

olution images. We did not used this approach on our re-
sults. Another improvement is to consider incremental up-
dates to the curve during user manipulation. Many computa-
tions could be reused in this situation.

5. Conclusion

We synthesize patterns along curves by copying undistorted
pieces from an exemplar. Our synthesizer freely grows the
pattern in the vicinity of the curve, letting the pattern exit
problematic areas. Thanks to a parallel implementation on
the GPU, results are produced in seconds. Our optional
stitching step aligns edges and propagates deformations at
render time: Only the exemplar, the piece coordinates and
the edge deformations have to be stored for rendering.

There are many ways to adapt this work to other settings,
by augmenting the objective cost with additional terms. For
instance, one may wish to take into account a stochastic
background texture instead of a transparent background. An-
other possibility is to mix different input patterns during syn-
thesis, allowing matches across exemplars.

6. Acknowledgments

This work was funded by the Agence Nationale de la Recherche
2008-COORD-021-01. Many images are from Flickr users: (Fig.1)
graceExtremiss, takanaImg416, michael pollak, GrandmaMari-
lyns, Social Butterfly Jewellery, james_gordon_losangeles. (Fig.7)
graceExtremiss, Bellafaye, CircaSassy, OhDarkDevil. (Fig.4) Cros-
sett Library Bennington College.

References
[Ase10] ASENTE P.: Folding avoidance in skeletal strokes. In

Proceedings of the Seventh Sketch-Based Interfaces and Model-
ing Symposium (2010). 3

[BBT∗06] BARLA P., BRESLAV S., THOLLOT J., SILLION F.,
MARKOSIAN L.: Stroke pattern analysis and synthesis. In Com-
puter Graphics Forum (2006), vol. 25. 2

[BCGF10] BÉNARD P., COLE F., GOLOVINSKIY A., FINKEL-
STEIN A.: Self-Similar Texture for Coherent Line Stylization. In
NPAR (2010). 1, 2, 5

[GPGB11] GALIN E., PEYTAVIE A., GUERIN E., BENES B.:
Authoring hierarchical road networks. Computer Graphics Fo-
rum 29 (2011). 1

[GVH07] GOODWIN T., VOLLICK I., HERTZMANN A.: Isophote
distance: a shading approach to artistic stroke thickness. In NPAR
(2007). 2

[Her98] HERTZMANN A.: Painterly rendering with curved brush
strokes of multiple sizes. In SIGGRAPH (1998). 2

[HOCS02] HERTZMANN A., OLIVER N., CURLESS B., SEITZ
S. M.: Curve analogies. In the Eurographics Workshop on Ren-
dering (2002). 2

[IMIM08] IJIRI T., MECH R., IGARASHI T., MILLER G.: An
example-based procedural system for element arrangement. In
Computer Graphics Forum (2008), vol. 27. 2

[JSTS06] JIA J., SUN J., TANG C.-K., SHUM H.-Y.: Drag-and-
drop pasting. ACM Transactions on Graphics 25, 3 (2006). 4

[KMM∗02] KALNINS R., MARKOSIAN L., MEIER B., KOWAL-
SKI M., LEE J., DAVIDSON P., WEBB M., HUGHES J.,
FINKELSTEIN A.: Wysiwyg npr: Drawing strokes directly on
3d models. In ACM Transactions on Graphics (2002), vol. 21. 1

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture
synthesis. ACM Transactions on Graphics 25, 3 (2006). 2

[LHL10] LEFEBVRE S., HORNUS S., LASRAM A.: By-example
synthesis of architectural textures. ACM Transactions on Graph-
ics 29, 4 (2010). 2, 5

[LL12] LASRAM A., LEFEBVRE S.: Parallel patch based tex-
ture synthesis. In Eurographics/ACM SIGGRAPH Symposium
on High Performance Graphics (2012). 4

[LYFD12] LU J., YU F., FINKELSTEIN A., DIVERDI S.: Help-
ingHand: Example-based stroke stylization. In ACM Transac-
tions on Graphics (2012). 1, 2

[MM10] MERRELL P., MANOCHA D.: Example-based curve
generation. Computers & Graphics 34 (2010). 2

[NM00] NORTHRUP J., MARKOSIAN L.: Artistic silhouettes: A
hybrid approach. In NPAR (2000). 2

[SPK10] SIBBING D., PAVIC D., KOBBELT L.: Image synthe-
sis for branching structures. Computer Graphics Forum 29, 7
(2010). 1, 2

[SYJS05] SUN J., YUAN L., JIA J., SHUM H.-Y.: Image com-
pletion with structure propagation. In SIGGRAPH (2005). 1,
2

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-
ics STAR (2009). 2

[XLSN10] XIE N., LAGA H., SAITO S., NAKAJIMA M.: Ir2s:
interactive real photo to sumi-e. In NPAR (2010). 2

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Terrain
synthesis from digital elevation models. Transactions on Visual-
ization and Computer Graphics 13, 4 (2007). 1, 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

360

