

Topology-constrained synthesis of vector patterns

Shizhe Zhou USTC

Changyun Jiang USTC Sylvain Lefebvre* INRIA

Motivation:

sketches -> decorative patterns -> physical objects

- Structured continuous vector pattern on curves.
- By-example: resembling and variations
- Physical objects that can be fabricated correctly on 3d printers(chairs, wristband, etc.)

<u>demo</u>

Vector shapes

Input : SGPH (Simple General Polygon with Holes)

Synthesis Mechanism: Slice and Shuffle

A Path from the first piece to the last piece gives a new vector pattern.

Merging cost

Merging cost

A Simple Example

Wait! There are "Islands" in the water..

"island": regions enclosed in but disconnected from the outer border

Ignore topology Desults

Challenges

- Previous synthesis problem.
 - variety, resemblance
 - interactive feedback, efficient displaying, zoom in/out

- avoiding broken results
- output data format : domain representation

1932 MG Six Saloon

Surprises

• Topology improves aesthetics.

"Topology is part of the Structural quality"

• Users fully control topology by parameters:

– given #connected-components and #holes

Our solution: Topology-constrained Synthesis

• Analysis from topology

- Shape analysis for optimal piece-sampling

- Synthesis in two stages
 - Topology solver
 - Geometry solver

Counting the inner holes

#hole ++

Tracking Topology

On-the-fly topology tracking

• Topology descriptor can not be pre-computed..

Topology equivalent: ≡

Given two DP items a b.

if(a and b have

the same #Componets,

the same #inner holes,

the same portal-component correspondences)

a is topoEqual to **b**; /*denoted as $a \equiv b^*$ /

Cubic DP

• Allowing arbitrary topology configurations co-exist

Backtracking

 The cubic DP gives complete solution space, where we explore by backtracking

- Simple UI: users specify #holes and #components
- O(K),K is the number of all possible solution.

Patterns on arbitrary curve

• Constituent pieces in parameterization domain

Closed loop

One more virtual piece to close

Bi-directional descriptor, but still O(nLog(n)) ③

Topo-Descriptor can detect if the pattern is literally "closed"

Repetition

How: by a new cost energy ? Jittering ? Or a function to bring complex structures?

We expect variety

Variation control

Autocorrelation weight = 0

Autocorrelation weight = 0.1425

Autocorrelation of index sequence:

$$A(\eta_0...\eta_K) = \max_{j \in [0,K]} \left(\sum_{i \in [0,K-j]} e^{-\frac{|\eta_i - \eta_{i+j}|}{\sigma}} \right)$$

Variation control

Variation control

Geometry Solver

- Positioning pieces
- Gap stitching

• Global band fairing

Gap stitching

- linear rotation invariant deformation
 - Endpoint driven
 - Reorient and merge seams
 - in one step

Our solution: Topology-constrained Synthesis

• Analysis from topology

- Shape analysis for optimal piece-sampling

- Synthesis in two stages
 - Topology solver
 - Geometry solver

Shape analysis

- Uniform slicing
 - Simple but major drawback
- Non-uniform slicing
 - Best split line searching

Slicing: important to the quality of the final results

Uniform slicing

• Pros:

- no need to accumulate band length \rightarrow lighter DP
- Variable "N" becomes explicitly known
- Cons
- Trivial pieces \rightarrow severe trivival repetition------
- Fixed group of topo-events → reduced topology variation

Problematic Piece

• Pieces contain no topology event

• Piece contain more than 1 topology events

Correct Piece

• Pieces contain exactly one topo-event

Non-uniform Slicing

- Reeb graph for optimal slicing
 - A discretization for analyzing topology of a continuous manifold
 - Tool for extracting topology information
 - Efficient

means "closed loop" constraint is imposed

Synthesizing rectangular patterns

Decorating surfaces

- Sketching patterns directly on a mesh
- Construct 3d bands along prescribed curves

Printed objects

Volumetric modeling Software : [IceSL, Sylvain Lefebvre 2013] 3D printing: Fused Filament Fabrication(FFF), Plastics Filament Fab(PLA), ZCorp powder based printer.

Inverse Patterns

#holes = 5

#holes =0

Pure repetition

Strictly repeated

Summary

Fabricated object

Limitation & Future work

Stochastic synthesis of vector patterns

 random exploration of topology descriptor

- Performance
 - accelerating dynamic programming

• Acknowledgement

We would like to thank colleagues in USTC and Inria for comments.

We would like to thank anonymous reviewers for their suggestions

- Funding
 - National Science Foundation of China: No.61303147
 - ERC grant ShapeForge (StG-2012-307877)

Thanks!

