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a b s t r a c t 

While many image composition and synthesis techniques have been proposed, neither existing work nor 

professional image editing softwares such as Adobe Photoshop © provide a program explicitly for the task 

of realistically swapping regions within a single image . In this paper, we present an easy-to-use image- 

editing tool explicitly for that purpose, named as PatchSwapper. Users can simply determine the centre 

and radius of a pair of candidate regions or specify arbitrary borders by sketches; then, the swapping 

step is automatically and optimally executed. A graph-based approach is designed to find the optimal 

borders of two irregular regions to avoid generating visible seams. We use this approach to handle both 

non-transformed and transformed patches. For non-transformed cases, we not only achieve realtime per- 

formance with CPU multi-thread implementation, we also provide a location recommendation algorithm 

to help users find the appropriate exchangeable areas. For transformed patches, our method searches for 

the optimal transformation to generate interesting appearance changes on both the source and target lo- 

cations. A Poisson color blending is performed onto the stitched patches. Overall the proposed approach 

is not only suitable for swapping image objects of any shapes but also for some other applications, e.g., 

image completion and composition. 

The experiments demonstrate that common images often contain potentially exchangeable areas and 

that large content variations can be obtained by simply swapping their locations. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, mach image editing work has proposed solu-

ions for image composition [1–7] , image melding among multi-

le images [8] , image retargeting [9–11] , image reshuffling [12–15] ,

nd image completion [16–21] in single images. In this paper we

xplore a special patch-based image editing operation—finding two

atches with identical boundaries in a single image and swapping

heir locations to produce a new image. We called it PatchSwap-

er. Using PatchSwapper, users can produce a natural yet substan-

ial appearance change [22] in a single image (see Fig. 1 and the

ccompanying video). 

Existing methods for patch swapping require a circular patch

23] or pre-segmentation [3] to find a closed cut. To avoid these 

imitations, we establish a sparse directed graph between two

atches based on the polar coordinate system. Since this graph
� This article was recommended for publication by Shi-Min Hu. 
∗ Corresponding author. 
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odel are built on pixels instead of patches [24] , it can eas-

ly adapt to irregularly shaped patches—including non-convex and

on-symmetric shapes, and it requires no preprocessing. We search

 set of closed cuts and exchange the internal pixels in the op-

imal cut. The entire process is highly parallelisable. Through ex-

eriments we verified that our algorithm achieves nearly a linear

peed-up ratio ( Fig. 9 ). Besides, we surprisingly find interesting re-

ults generated by our method on transformed patches. 

Often, a potentially exchangeable pair is difficult to discern with

he naked eye. Therefore, we provide a location recommendation

lgorithm based on regional image similarity in this study. Specifi-

ally, we randomly select pairs of exchangeable areas surrounding

ach pixel in the input image according to their global similarity,

nd perform non-maximal suppression on each location accord-

ng to the local similarity of the central region of the respective

atches. A high global similarity guarantees the high quality of an

ptimal cut, while a low local similarity will lead to drastic appear-

nce changes after swap. 

We also show other applications of PatchSwapper in image

ompletion and image composition ( Figs. 12 and 13 ). Our method

hows the same level of quality as state-of-the-art patch based

https://doi.org/10.1016/j.cag.2018.03.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
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Fig. 1. Content Swapping. Above two group images demonstrate the effect of PatchSwapper. In each group, the left image is the original image and the right image is the 

result after PatchSwapper. (a) the result on non-transformed patches after PatchSwapper one time. (b) the result on transformed patches after PatchSwapper 3 times. 

Fig. 2. Overview of the system. (a) Specify two patches P 1 and P 2 . (b) Find the optimal cut c � and c 
′ 
. Overlapping P 1 and P 2 , then find the optimal cut c � on this overlapping 

region. I 
′ 

is the copy of I and c 
′ 

is the duplicate of c � on P 1 . (c) Swap two regions R 1 , R 2 to produce the output O . R 1 and R 2 are enclosed by c � and c 
′ 

respectively. 

Fig. 3. Optimal cut searching. (a) We establish a counterclockwise polar coordinate system on pixel difference map D centered at pixel ρ . Horizontal radius r s denote the 

starting line of our closed path searching. For each node o j on r s , we compute an optimal closed path that starts and ends at the same pixel. Then, we select the optimal 

path c � , here for instance c � = c o 2 (the thick orange curve), from all these paths. (b) Zoom-in view of D near the pole ρ . Let’s consider the connection between node i and 

its 1-ring neighborhood. i 5 , i 6 , i 7 have polar angle greater than i , so we define edges emanating from i to them (blue arrows). i 3 , i 4 have the same polar angle with i but 

have different radius, so we define edges i 3 → i , i → i 4 (red arrows). Specifically we define edges i 0 → i , i 1 → i and i 2 → i (orange arrows) to ensure the closure of paths. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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methods [8,18–21,25] . To summarise, our main contributions are as

follows. 

• We introduce a special and useful patch-based image

operation—PatchSwapper. PatchSwapper not only can ex-

change the location of two objects directly and precisely

( Fig. 1 (a)), not need to take extra time to fill the area outside

the selected area compared to image reshuffling [12–15] ; but

also can create new structured patterns ( Fig. 1 (b)). 
• We propose a novel graph algorithm to efficiently search for

the optimal closed cut. This approach achieves real-time per-

formance even on a consumer-level CPU and is suitable for any

patch shape ( Fig. 9 ). 
• We present a helper feature consisting of a location recommen-

dation algorithm based on regional image similarity. This fea-
ture helps users discover potentially exchangeable patches in an

image without having to perform exhausting test-and-evaluate

procedures ( Figs. 7 and 8 ). 

. Related work 

Texture Synthesis is an important aspect of computer graphics

hat focus on creating regular or semi-regular textures from small

xemplars. Earlier texture synthesis algorithms were based on pix-

ls and utilise pixel adjacency [26–28] or Markov Random Fields

 MRF ) [29] to perform the synthesis. Compared with pixel-based

mage synthesis, patch-based methods [23,30] are better at cap-

uring and preserving structures because they copy regions rather

han only pixels from the exemplar. A highly parallel algorithm
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Fig. 4. Swapping results of our method on non-transformed patches. The input 

(original) images are marked with a small magenta square on their top left corners. 

Fig. 5. Swapping results of our method on transformed patches. The patches are 

allowed to be rotated and scaled. Our algorithm automatically searches for the best 

transformation by testing all combination with rotation angle from 0 to 360, and 

the scale ratio 1.0 to 1.3. 

Fig. 6. Swapping result using specified regions. From left to right are the input im- 

ages, arbitrary boundaries specified by user sketches, the swapping result of the 

rectangle regions, the swapping result of specified boundaries, in which the in- 

tegrity of the object is better preserved. 
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s presented in [23] that iteratively lays out patches and stitches

hem together using the parallel processing power of a GPU . Using

olar coordinates, they transform the colour difference map into a

ynamic Programming ( DP ) table. However, this step causes little

istortions, especially for pixels near the polar centre. Moreover,

his method must perform the coordinate transformation again
hen the cut is computed. Our method does not require any coor-

inate transformation or any pixel interpolations to find the cut. 

Patch-based Image Processing has been successfully applied for

arious editing tasks on photos [12] , photo collections [24] , videos

31] , and light fields [32] . Barnes and Zhang [33] has investigated

ecent papers in this topic since 2009 to 2017. It has summa-

ized the existing methods and divided these into two main stages:

atching and blending . Suitable patches copying from exemplars

ill be found at the matching stage, and be combined and blended

ogether on the output image at the blending stage. PatchTable

31] has introduced a data structure to efficiently query the ap-

roximate nearest neighbor in large datasets. They precompute a

ultidimensional hash table which maps a hash bucket to an ex-

mplar patch in datasets, and use Locality-sensitive hashing (LSH)

o map the query patch to the hash table cells. 

Poisson Blending is a commonly method used in image editing

hat seamlessly blends colours from two images without visible

iscontinuities around the boundary by solving a Poisson equa-

ion [34] . Therefore, it is often used to enhance the combined re-

ults [1,3,5,8] . The effectiveness of Poisson blending depends on

he colour-smoothness of the boundary. Drag-and-drop pasting

3] presents a shortest closed-path algorithm to iteratively opti-

ise the location of the best boundary. Their method first removes

he interior part of the patch and then computes a closed path on

he remaining narrow band. In contrast, we build a graph model

irectly from the whole patch. In addition, our method involves

nly a single dynamic programming step and does not require pre-

rocessing, e.g., segmentation or object cutout. 

Optimal Seam in general, the optimal seam method uses an en-

rgy function defined on the pixels. Then, it finds a vertical or hor-

zontal curve in a pixel-based graph. Optimal seam is a common

pproach in image retargeting [9] and for applications such as ob-

ection insertion [1] , texture synthesis [25,35,36] and superresolu-

ion [37] . The Seam Carving method proposed by [9] employs a

imple content-aware image resizing operation by removing or in-

erting a seam. This method supports various types of energy func-

ions, such as sum-of-squared-differences ( SSD ), gradient magni-

ude, entropy, visual saliency, eye-gaze movement, and others. In

35] , the authors cast synthesis as a shortest-path graph problem.

ach path in the graph implies how to form the result by cutting

trips from the source image and reassembling them in a specific

rder. They use SSD as the energy function to achieve a content-

ware cut searching mechanism. In [25] , the authors introduce the

raph-cut Textures, a graph cut technique to find a minimum cut

n a special graph model. Compared to the image quilting [36] , this

cheme produced better results in many cases. 

. Region swapping 

Given a single image, we assume the task is to swap a pair of

atches from different locations. Achieving this task faces the fol-

owing main technical challenges. (1) The candidate regions must

ave exactly the same shape and the same outline so that no gap

ill exist after the swapping operation. (2) The colour differences

long the boundaries of the candidate patches should be mini-

al; the goal is to have no visible seam after the swapping op-

ration. (3) To meet real-time requirements, the algorithm must

e lightweight and structurally simple. In addition, an implicit re-

uirement exists: because people naturally tend to desire a drastic

isual appearance change after editing, the two candidate patches

hould be as large as possible. 

Our approach to seamless swapping is to search for repeated

ontent in the form of circular paths along which similar colours

re observed [35] , rather than similar objects [11,38–40] . In the tra-

itional optimal seam approach [1,2,35,36] , the cut follows an open

urve segment. In contrast, to solve our problem, we must find
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Fig. 7. Results of recommendation algorithm on images with complicated structure. 

The pairs of exchanged regions are marked by the ellipses with the same colour in 

the input image (left). 

Fig. 8. Results of recommendation algorithm on images with regular structure. The 

pairs of exchanged regions are marked by ellipses with the same colour in the input 

images and the output images. Since the patches P 1 , P 2 are aligned and have a high 

Sim global , the results well preserve the original structure in input image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Performance analysis of the optimal cut search procedure in single threaded 

and multi-threaded CPU modes. The parallel efficiency E p of our algorithm is ap- 

proximately 0.9, while our multi-thread implementation achieves 10 FPS for a patch 

width of 221 pixels and obtains a realtime performance when the patch width less 

than 161 pixels. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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a closed cut on a difference map of two patches. However, find-

ing a closed path on an undirected graph [3,23] is an intractable

problem. Therefore, to make it tractable, we convert the overlap-

ping pixel region into a well-organised directed graph by defining

a novel graph-model on the difference map based on the polar co-

ordinate system. Then, a shortest path algorithm [41] is employed

at different pixels in parallel to compute a set of closed shortest

paths. Finally, we select the best closed shortest path as the opti-

mal cut. This process is highly parallelisable. 

The entire process of PatchSwapper is performed in three

stages. As shown in Fig. 2 , the first stage involves specifying two

patches of the same size P 1 and P 2 which should not overlap mu-

tually due to the variation of neighbours after swapping. W.l.o.g,

we first describe our algorithm using circular patches. However,

the implemented algorithm uses square patches and has no prob-

lems. The second step finds an optimal cut c � on a difference map,

which can be regarded as finding two cuts of the same shape c � 

and c 
′ 

in the respective patches P , P where c � , c 
′ 

enclose the re-
1 2 
pective regions R 1 , R 2 . Finally, we swap the paired pixels in R 1 and

 2 . Sections 3.1 and 3.2 describe these steps in more detail. 

.1. Graph model 

Using a polar coordinate system centred at pixel ρ , a directed

raph can be built whose nodes are the pixels in the difference

ap and whose edges are specifically defined as suitable for our

roblem. We define weights on the nodes instead of edges. Then,

earching for an optimal cut to swap the patches can be reduced

o finding a closed shortest path in the directed graph. 

First, it is necessary to choose a matching quality measure that

as only a small computational cost for the pixels from P 1 and P 2 .

he sum of squared differences ( SSD ) is an ideal measure because

t measures the colour difference between pixel pairs in the sim-

lest way. We compute the difference map D on the overlapping

egion derived from completely aligning the two patches. D is a

isk with radius r equal to the radius of the user-selected patch.

et i denote a pixel position in the overlapping region. The differ-

nce D(i) has the following form: 

 (i ) = ‖ P 1 (i ) − P 2 (i ) ‖ (1)

In all our experiments, we compute D(i) in the RGB colour

pace. 

The pole and the reference direction are the two most essen-

ial concepts of the polar coordinate system. Each polar point on a

lane is determined by a distance from the pole and an angle from

he reference direction. In Fig. 3 (a), we define the centre pixel ρ of

 as the pole, and the horizontal radius r s (black) as the reference

irection. 

On this basis, we construct the directed graph g , in which the

eight of each node i is equal to D(i) . We take advantage of the

olar coordinate to determine whether the nodes are adjacent.

ig. 3 (b) shows the 8-neighbourhood connections of node i to its

eighbours. We link node i to the nodes whose polar angle is

reater than i (blue arrows) or whose polar angle is equal to i but

hose radius is greater than i (red arrows). The latter type of edges

xtends the searching space, allowing better cuts to be found. The

range edges exist only immediately above the radius r s . Such a

onnection is crucial for closed paths to exist in the graph. The

radual increase in polar angle ensures that a closed path is finally

ormed. The directed graph g is a sparse graph in which the num-

er of edges is approximately 4 times the number of nodes, and it
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Table 1 

Different size of the local portion. Setting the patch size to 161 ∗ 161, we have col- 

lected after 10 0 0 times recommendation on the image from Fig. 7 . (a), (b), (c). It 

has shown a good balance between the average difference M(c) and the number of 

pixels exchanged (denoted by percentage) when local portion size equal to (r + 1) 
2 
. 

Portion size Fig. 7 (a) Fig. 7 (b) Fig. 7 (c) 

M(c) Percentage M(c) Percentage M(c) Percentage 

41 ∗ 41 0.001532 28.36% 0.010013 29.93 0.001356 39.22 

81 ∗ 81 0.001881 29.65% 0.010108 33.83 0.001358 46.25 

121 ∗ 121 0.002421 31.67% 0.011542 34.02 0.001637 47.33 
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s applicable for any patch shape. Here, because the topology of our

raph remains constant, the directed graph can be pre-computed

nd stored. Subsequently, each time a path-searching procedure is

nitiated, we need only recalculate its weights. 

Because the procedures of searching for a shortest path starting

t different nodes is identical for every node [41] , these procedures

an be executed without any data-exchange, runtime communica-

ion, or synchronization, which makes this procedure highly suit-

ble for parallel execution on multi-core platforms ( Fig. 9 ). 

.2. Optimal cut 

Note that we obtained the shortest path set C starting from

nd ending at each node located in r s (the thick solid black line

n Fig. 3 (a)). To achieve a better editing effect, a patch swapping

peration should seamlessly exchange regions that contain rich vi-

ual content. Achieving this goal requires finding the largest possi-

le image regions enclosed by an optimal cut. To accomplish this,

e select one optimal cut from a set of shortest paths obtained

rom the procedure described in the preceding section. 

We filter out paths that contain too few pixels because ex-

hanging small areas will not introduce much variation. Because

he operation that counts the number of internal pixels within the

rregular closed path is time consuming, we use the path bound-

ng box to estimate the number of pixels it contains and discard

aths that contain fewer internal pixels than | D |/4. | D | is the num-

er of pixels in the difference map D . The remaining paths are rep-

esented by C o j , o j ∈ r s . 

For these remaining shortest paths, simply using the total dif-

erence in path length to select the optimal cut is unreasonable.

ecause each path has a different length in pixels, we introduce

he concept of average difference: 

(c) = 

∑ 

i ∈ c D (i ) 

| c | (2) 

here | c | is the number of nodes on c . We select the short-

st path with the minimum M(c) value as the optimal cut c � =
rg min c∈ C o ( M( c) ) (as shown in Fig. 3 (a)). We obtain the exchange

egions R 1 , R 2 through c � and its duplication c 
′ 

( Fig. 2 (b)). Finally,

e swap R 1 and R 2 to produce the final output O . The output O

an be further enhanced by poisson blending [34] to eliminate the

olor gap ( Figs. 4 and 5 ). Intuitively, O is more effective when the

atches, P 1 and P 2 , are larger. However, increasing r excessively

ends to filter out promising cuts that can result in plausible ap-

earance changes. 

In some cases users wish to swap two specific objects with-

ut being cut through by the pathes ( Fig. 6 ). Here we let the user

raw the borders of two regions, then the union of two regions is

omputed by aligning their centroids. Next we perform a restricted

atchSwapper by modifying the structure of our graph g , i.e., re-

oving the nodes inside the union(including those lying on the

order of the union). Thus the restricted PatchSwapper strictly pro-

ects the integrity of the object enclosed by the border( Fig. 6 ) after

he seamless swapping. More details are shown as animation in

he accompanied video. 

. Swapping location recommendation 

Finding potentially non-transformation exchangeable regions 

hat exist in an image is often not easy with the naked eye; con-

equently, a recommendation algorithm that suggests reasonable

andidate swap pairs to users is helpful. This recommendation al-

orithm is based on regional similarity, global similarity Sim global 

nd local similarity Sim local . The final candidate proposals do not

verlap each other and will yield a high-quality output. After mul-
iple recommendations and decisions, the final synthesized image

an be formed (see Figs. 7 and 8 ). 

Here we define global similarity as follows: 

im global (P 1 , P 2 ) = 

1 

| D | 
∑ 

i ∈ D 
D (i ) (3) 

here D is the difference map of P 1 , P 2 . We compute the global

imilarity for every possible pairable location (usually set the step

o 10) and select the pair of swapping locations stochastically for

ach location l in the input image according to following probabil-

ty function: 

 (P l , P 
∗) ∝ e −

Sim global (P l , P 
∗ ) 

kσ2 (4)

here P l is the patch centering in l , P ∗ denote the corresponding

atches of P l , σ is the standard deviation of the pixel values in

he input image and k controls the randomness in pair selection.

 low k value picks similar regions whereas a high k value selects

airs more randomly. In our experiments, we set k to 0.1. Global

imilarity ensures that the cut is more likely to pass through low-

ifference nodes and implicitly aligns the main structure of the in-

ut image (see Fig. 8 ). 

After picking candidate pairs for each location l , non-maximal

uppression is performed on those pairs according to the local sim-

larity, which rewrote Eq. (3) : 

im local (P 1 , P 2 ) = 

1 

| D p | 
∑ 

i ∈ D p 
D (i ) (5) 

here D p is the difference map of local portion p . We define the

local portion” in the patch to be the area centred around the pole

hose radius is equal to r /2. This radius given a good balance be-

ween the average difference M(c) and the number of pixels ex-

hanged in our experiment ( Table 1 ). When this process is com-

lete, the remaining pairs do not overlap each other and their po-

ential exchangeable regions have distinct appearances. We then

earch for the optimal cut only among the remaining pairs to pro-

ide final recommendations to the user. 

In our implementation, we set P 1 and P 2 to be squares of size

(2 r + 1) 2 due to the convenience on follow steps. Thus, the local

ortion is a square with a width of r + 1 . We can rewrote D(i)

1) to obtain the follow equation: 
 

i ∈ D 
D (i ) = 

∑ 

i ∈ D 
P 2 1 (i ) + 

∑ 

i ∈ D 
P 2 2 (i ) −

∑ 

i ∈ D 
P 1 (i ) P 2 (i ) (6)

hen calculating global similarity Sim global . The first two terms in

6) are the sum of squares of the pixel values over P 1 or P 2 . These

alues can be computed efficiently in O(m) time using summed-

rea tables. The sum of the third term is a convolution of the input

ith the output and can be computed in O(m log m) time using an

FT . Here, m is the number of pixels in the difference map D . We

lso use this method [25] to calculate the local similarity Sim local ,

nd achieved a huge performance acceleration. 

We validated the effectiveness of our recommendation algo-

ithm in two aspects: the average difference M(c) ( Eq. (2) ) nor-

alized to range [0,1] and the number of internal pixels. The data
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Table 2 

Comparison between recommended positions and random picked positions. There 

are significant improvements in the M(c) and the number of internal pixels. 

Patch size Recommended position Random picked position 

M(c) Pixel number M(c) Pixel number 

121 ∗121 0.002312 5945.92 0.007329 5707.96 

141 ∗141 0.002270 8343.26 0.006521 7677.32 

161 ∗161 0.002118 10990.75 0.005897 10188.81 

Table 3 

Percentages of unproductive cuts in our approach and [23] . Most of results pro- 

duced by [23] enclose very few pixels, even no pixels. Therefore, it can not bring 

an obvious visual change in the input image after swapping. 

Pixel number [23] Ours 

0 16.10 0.00 

Below 10 42.66 8.51 

Below 100 55.60 22.70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Results of the patch swapping method in [23] . (a) The P polar and its differ- 

ence map in [23] ; (b) Because method in [23] has to transform the circular patches 

to a rectangular DP table, in many cases (e.g., the area in the difference map near 

the polar point (left side), which has low error) the periodic path in the DP table 

tends to enclose a very small image region. (c) Our method produces a significantly 

larger patch for swapping. 

Fig. 11. Performances of our approach and that in [23] estimated by the number 

of internal pixels and M(c) . In our experiment, we compare our method (no filter) 

with the method in [23] in above criterions. The former (blue dotted line) is slightly 

better than the latter (red dotted line) on M(c) , which is merely about 0.0014. How- 

ever, there is a considerable gap on pixels number between their method (blue solid 

line) and our method without filter (red solid line), reaching the peak at 7658 pix- 

els in patch width of 301 pixels. In addition, we provide the data (orange dotted 

line) of our whole method ( Section 3.2 ) in M(c) on the chart. From the chart, we 

can observe that the difference in M(c) between the whole version and the no filter 

version is quite small. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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in Table 2 was obtained on 5 different images, randomly picking

10 0 0 locations or selecting 10 0 0 recommended locations on each

image. Since a drastic decrease on M(c) and a significant increase

on internal pixels number have emerged on the table, we can find

out that the recommended algorithm can greatly improve the qual-

ity of results. Furthermore, that algorithm is well-suited for a grid

structure image ( Fig. 8 ). 

5. Application and results 

We tested our method for non-transformed patches on a wide

range of images. Here we present the results and analyse the

method’s performance in both single and multi-threaded modes.

Furthermore, we compared our method to the state-of-the-art

method [23] and applied it to image completion and image compo-

sition. All the results were obtained running on an Intel I7 7700K

4.2 GHz using 4 cores and 8 threads for computations. 

For the sake of implementation simplicity and runtime effi-

ciency in practice, as mentioned earlier, we used square patches

rather than circular patches. We denote the width of the square

patch by ω. 

Time consumption. Through the experiments, we observed that

the parameter with the greatest impact on both image quality and

performance is the patch width ω. We tested the proposed method

on 5 images while varying ω from 61 to 301 at a step size of 10 . For

each ω we randomly selected 10 0 0 locations to compute the opti-

mal cut. Fig. 9 shows the performance results of the experiments.

As shown in Fig. 9 , we achieved interactive swapping for patches

up to 221 ∗ 221 in size. As we mentioned before, oversized patches

may filter out promising cuts. A patch width of ω = 221 provides

an acceptable balance between plausible results and the interactive

runtime performance (see the accompanying video). Furthermore,

we plotted the parallel efficiency of the algorithm (the green line

shown in Fig. 9 ), which shows that the speed-up ratio of the algo-

rithm is approximately linear as the patch width increases. 

Comparison with state-of-the-art methods. The authors of

[23] also proposed a fast approximate closed-cut algorithm using

polar coordinates and dynamic programming. There are some fun-

damental differences between their method and ours: (1) Their

method transforms the circular selected region to a rectangular

patch. Consequently, a pixel in the selected region may correspond

to multiple pixels in the rectangular areas. So their results on two

patches with similar central areas will enclose very few pixels

(Usually less than 10, see Table 3 and Fig. 10 (b) and (c)). (2) their

method can not be straightforwardly generalized to non-circular ir-

regular shapes. Forcing the mapping from an irregular shape patch

to a circle using a mask wastes DP table space ( Fig. 10 (a)). 
We implemented the method in [23] using the same energy

unction ( Eq. (1) ) and compare with our method. Here, we set the

adius of the selected region to ω/2 for the method in [23] . While

arying the ω from 61 to 301 at a step size of 10 , we obtained the

espective results on same locations which are randomly picked in

0 0 0 positions per image on 5 different images. We compare our

ethod which does not filter small exchangeable regions with the

ethod in [23] rather than the whole approach due to the impact

f filter on the number of internal pixels. Although [23] ’method

as a faster speed and a small gap on M(c) , we may reasonably

onclude that our method is more suitable on the task of ex-

hanging two regions compared to the method in [23] because of

he high proportion of unproductive cuts which enclose few pixels

ith small M(c) in their results (see the Table 3 ). In fact, our re-

ult still looks authentic and evidently demonstrates the change of

ppearance after swapping in spite of the narrow margin of M(c) .
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Fig. 12. Image completion (a) Input image in which the red region needs to be 

completed; (b) Darabi et al. [8] ; (c) Joo Ho Lee et al. [21] ; (d) our method with 

only 1 swap on non-transformed patch; (e) input image; (f) Lundbæk et al. [18] ; 

(g) Kaiming He et al. [19] ;(h) our method with only 1 swap on non-transformed 

patch; (i) input image; (j) Barnes et al. [31] ,the run time = 38.91s; (k) our method 

with only 1 swap on transformed patch,the run time = 1.082s + time for interaction; 

(l) input image; (m) Jia-Bin Huang et al. [20] and (n) our method with only 1 swap 

on transformed patch. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 13. Examples of interactively combining two source images. (a) Sources im- 

ages; (b) Kwatra et al. [25] ; and (c) our method. 
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Fig. 14. Incorrect patch locations can lead to implausible results. In this example, 

the forest cut off the overpass. 
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n Fig. 10 (b) and (c) we show the comparison results on identical

atch locations of the same image. 

Applications. Our approach can also be used in other image pro-

essing contexts. Fig. 12 shows the application of image comple-

ion. Unlike the fully automatic image completion methods [8,18–

1,31] our algorithm requires user intervention to obtain satisfac-

ory results, but the whole process is not time-consuming (about

0 to 40 seconds) and the results will have less artifacts com-

ared with state-of-the-art methods in some cases give a correct

ser intervention ( Fig. 12 ). However it consumes more time to do

ultiple trial-and-error when the missing region requires largely-

ransformed patches to fill ( Fig. 12 (l)). Also we do not consider

xplicitly the perspective transformation and synthesis new con-

ent from small patches [31] , so our method could fail in the im-

ges with strong perspective effect [20] and the images with few

vailable examplars. 

For image composition, unlike the approach in [13] and [6] ,

sers can interactively drag a large selected patch into a new lo-

ation in the target image in a WYSIWYG (what you see is what
ou get) way, without any computation for a new background or

djustment for the location of the patch. Here, we compare our

ethod with that of [25] in Fig. 13 . Although the results are very

imilar, the near realtime performance of our algorithm results in

 better interactive experience. 

. Discussion and limits 

In this study, we revealed that common images contain many

ossible exchangeable areas, and we proposed a concise algorithm

o perform such exchanges. In addition, to aid users, we proposed

 recommendation algorithm based on regional similarity. This al-

orithm recommends exchangeable region candidates to the user.

hese recommendations offer possibilities for appealing synthe-

ized images without users having to perform tedious editing and

mage-manipulation tasks. 

The limits of PatchSwapper are 2-fold. One is that each node

f our directed graph-model represents only the colour differences

f one pixel: neither any neighbouring structure nor any seman-

ic information is considered. This approach can produce artefacts

 Fig. 14 ) when the boundaries of the swapped patch match but the

nner structures of the two patches do not match. This problem

an be improved easily by using a higher dimensional appearance

pace. The other is that our synthesis quality is highly dependent

n the location of the patch centre. Unrealistic results could be

enerated if the patch location is incorrect. For example, in Fig. 14 ,

he forest is replaced by a highway segment. The underlying rea-

on for this problem is that searching for the best swapping loca-

ion (as well as the rotation angle and the scaling ratio) is com-

utationally intensive; therefore, in future work, we plan to design

n efficient search procedure using the GPU . We will also plan to

ontinue exploring how to apply this technique to video editing. 
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