
DeepShapeSketch : Generating hand drawing
sketches from 3D objects

Meijuan Ye1 , Shizhe Zhou1,2,∗ , Hongbo Fu3
1College of Computer Science and Electronic Engineering, Hunan University, Changsha, China

2Key Laboratory of High Performance Computing and Stochastic Information Processing, Ministry of Education of China
3City University of Hong Kong, Hong Kong, China

mj@hnu.edu.cn, shizhe@hnu.edu.cn(corresponding author), hongbofu@cityu.edu.hk

Abstract—Freehand sketches are an important medium for
expressing and communicating ideas. However creating a mean-
ingful and understandable sketch drawing is not always an
easy task especially for unskillful users. Existing methods for
rendering 3D shape into line drawings such as Suggestive Con-
tours, only consider the geometry-dependent and view-dependent
information thus leads to over-regular or over-perfect results
which doesn’t look like a human freehand drawing. For this
challenge we address the problem of producing freehand line
drawing sketches from a 3D object under a given viewpoint
automatically. The core solution here is a recurrent generative
deep neural network, which learns a functional mapping from
the suggestive contours of a 3D shape to a more abstract sketch
representation. We drop the encoder of the generator, i.e., use
only a decoder to achieve better stability of the sketch structure.
Users can tune the level of freehand style of the generated
sketches by changing a single parameter. Experiments show that
our results are expressive enough to faithfully describe the input
shape and at the same time be with the style of freehand drawings
created by a real human. We also perform a comparative user
study to verify the quality and style of generated sketch results
over existing methods. We also retrain our network using several
different mingled dataset to test the extendibility of our method
for this particular application. As far as our knowledge this work
is the first research effort to automate the generation of human-
like freehand sketches directly from 3D shapes.

Index Terms—Freehand sketches, Generative recurrent neural
network, 3D object

I. INTRODUCTION

Sketching is a common art form used in communication,
rendering, and exchanging ideas, especially for expressing
the overall shape of a certain 3D object. People in ancient
times have already created line arts such as animal figures or
buildings on cave rock on shells as a record of their lives. This
is basically because we are able to easily envision the actual
3D shape when we observe its corresponding sketch images.

However, not every human being is well-trained for sketch-
ing or drawing. It is generally not very easy for an amateur
artist to create an accurate sketch according to a given 3D ob-
ject. Furthermore, the sophisticated skills used by professional
artists for creating cartoons or mangas are not quite suitable
for daily utility, since usually they take a lot of time to finish.
It is more natural to use simple strokes to create relatively
abstract patterns to convey shape-wise information or even
express new design ideas. However we do not inherently
have the ability to draw using just a few sketch lines to

correctly describe a 3D shape. On the other hand, existing
methods for directly rendering 3D shape into line drawing
such as Suggestive Contours [1], only considers the geometry-
dependent and view-dependent information thus leads to over-
regular or over-perfect results which doesn’t look like a human
freehand drawing. The straightforward solution of extracting
the edge map of a simple projection from 3D models also
suffer from the same problem. Furthermore, such edge map
results are often uncontinuous, difficult for vectorization.

To address this issue we propose a new approach to translat-
ing three-dimensional objects into freehand human sketches.
To sketch the shape of a 3D object is not a simple perspective
or orthogonal projection of the 3D object on the image domain.
A good shape sketch contains not only the outline of the
object but also the lines of the fold detail that can reflect the
internal features of the object. This requires the 3D object to
be converted into a 2D view with distinct features. The major
idea of our approach here is to take the 3D object as input
and generate sketches that are quite similar to human hand-
drawings through neural network learning. We first build a
GMM distribution of sketch line shapes via supervised training
a Recurrent Generative Adversarial Neural Network which
introduces certain levels of randomness or minor deformation
to the sketch lines, and then constrain the overall orientation of
the sketch object with a novel sampling method after training
the neural network.

Variational Autoencoders (VAEs) [2], [3] and Generative
Adversarial Networks (GANs) [4]–[6] are important deep
learning models in recent years. Sketch-RNN [7], an exist-
ing deep learning method for sketch generation, used the
sequence-to-sequence variational-auto-encoder (VAE). How-
ever, one drawback of VAE is that the resulting samples are
usually blurred due to injected noise and imperfect elemental
measurements such as squared errors. Therefore, we remove
the encoder and add a discriminative network based on Sketch-
RNN [7]. The generative network and the discriminative
network together form our generative recurrent adversarial
networks. In each training session the generative network
produce data simulating an unknown distribution, and the
discriminative counterpart is trained to distinguish between
the generated fake data and the samples from the genuine
observations, so as to eventually modify the generator to
maximize confusing probability against the discriminator.

The main procedures of our method are listed below: We
first convey the shape of 3D objects into line-drawing forms
using a non-photorealistic rendering system. Here we use
DeCarlo et al.’s method: Suggestive contours [1]. We render
the suggestive contours of each object from many different
viewing directions to bulk-produce a two-dimensional line
drawing sketch image dataset. Then a vectorization process
is performed on the sketch images to obtain two-dimensional
coordinate information. Based on the Sketch-RNN model [7],
we remove the encoder and add the discriminative network
composed of a recurrent neural network. Finally a novel
two-phase sampling process to construct human-like freehand
vectorized sketches from the above neural network.

Our work contains contributions from 4 aspects:
• As far as our best knowledge, the problem of generating

freehand vectorized sketches from a 3D object at a given
viewpoint is addressed for the first time using a deep
learning method, which enables cross-domain stroke-level
visual understanding of a reference 3D object.

• A supervised uncycled translation network is applied to
train our model. Due to the absence of the ground truth
of our problem, a generative adversarial neural network
is applied to verify if the generated sketch has a good
balance between structure soundness and the style of an
amateur human creator.

• A novel two-phase sampling process to guarantee more
correct orientation of the result sketch.

• A middle-size dataset of 3D model snapshot photo and
its corresponding vectorized sketches for future study on
data-driven sketch generation.

II. RELATED WORK

In essence our problem here is an application of deep
generative neural network onto the vectorized line depiction
of 3d Shapes. Many research works are related to this problem
and we categorize these works into 3 areas listed below.

A. Deep Generative Models

The recent 5 years have witnessed many developments of
deep generative models. There are generally three themes:
VAE [2], [3], GAN [4]–[6] and other neural networks based
on GAN [8]–[11]. VAE pairs a programmable network with
a decoder/generative network. The Sketch-RNN model of Ha
and Eck [7] also used VAE. However, VAE has a disadvantage
in which the generated samples are usually ambiguous due
to imperfect element measurements,e.g.,the squared error and
injection noise. GAN is another very popular generative model
which simultaneously trains two modules: a generative sub-
network,i.e.,generator, to synthesize data, and a discriminative
subnetwork,i.e.,discriminator to differentiate between synthe-
sized and genuine data. However, the GAN is relatively slow to
converge and its generated sample data can be unsatisfactory.
The quality of the generated samples can be improved by
modifying its structure and loss functions,e.g.,Wasserstein
GAN (WGAN) [12], McGAN [13], and Loss-Sensitive GAN
[14]. There are also methods that attempt to incorporate GAN

and VAE, such as VAE/GAN [15], CVAE-GAN [10]. Another
type called Recurrent neural networks(RNNs) are proposed
for simulating sequential data, and there are many works to
combine RNN with GAN, such as C-RNN-GAN [9] and S-
LSTM-GAN [16].

B. Recurrent Vector Image Generation

There is relatively little work done using neural networks
to generate vector sketch images currently. Earlier, there was
a work [17] that apply Hidden Markov Models(HMM) to
synthesize human sketch lines. The method of Alex Graves
[18] laid the foundation for generating continuous data points
using a hybrid density network [19]. They showed how to use
the recurrent Long Short-term Memory network to generate
complex sequences with long-distance structures to approxi-
mately generate vectorized hand-written numbers. Similar net-
works were proposed for vectorized Kanji characters and hand
drawing sketches, unconditionally or conditionally modeling
the sketches as stroke actions sequences. Sketch-RNN (a kind
of recurrent neural network that can construct ordinary objects
based on strokes) proposed by Ha and Eck [7] outlines a
strategy for generation of line art vector graphics both condi-
tionally and unconditionally.Their proposed apporach based on
a recurrent neural network can generate sketches of common
objects in vector format from input images. Chen et al. [20]
made two changes on the basis of Sketch-RNN: One was to
use a convolutional neural network (CNN) instead of the bidi-
rectional RNN encoder. The other was to remove the Kullback-
Leibler (KL) divergence from VAE objective loss function. It
had better performance than [7] in learning and generating
multiple categories of sketches. A recent work proposed by
Muhammad et al. [21] used reinforcement learning to generate
sketches with different abstraction level from images. Song et
al. [22] used a deep learning model to achieve stroke-level
cross-domain visual understanding. The problem of noisy su-
pervision caused by diversified and subjective human drawing
styles was addressed by developing a new mixed-supervised-
unsupervised multi-task learning framework. With a novel
shortcut cycle consistency constraint the unsupervised learning
was implemented more effectively.

C. Lines to Depict the Shape of 3D objects

The goal of line rendering is to capture key features on
the surface of an object and use lines to represent the shape
of the object. Rendering methods are generally categorized
into two categories: view-independent and view-dependent.
For view-independent rendering methods, the main research
focuses on the extraction of ridges and valleys. Such lines do
not take into account the viewing angle and are determined
only by analyzing the geometric properties of the surface of the
object; the view-dependent rendering methods must determine
the viewing angle firstly, and the resulting line is related to the
choice of viewing angle. The most commonly used is object
contours, which are lines formed by the point perpendicular
to the line of sight [23]. The representative method is the
Suggestion Contours method developed by DeCarlo et al. [1].

S1

S2

S3

St-2

St-1

St

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

GMM

GMM

GMM

GMM

GMM

GMM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

S1

S2

S3

St-2

St-1

St

y1

y2

y3

yt-2

yt-1

yt

S’
1

S’
2

S’
3

S’
t-2

S’
t-1

S’
t

… … … … …
Reward

Real Image

Synthesized Sketch

Input Generator Real/Fake Discriminator

Viewpoint

Fig. 1. Our network structure for generating sketches. See Section III-B for details.

This method was used by Sang et al. [24] and Yoon et al. [25]
for several related applications such as retrieval. And it has
also been used for many other applications. In addition, Judd et
al. [26] proposed the Apparent Ridges method, which differed
from the Suggestive Contours in which it projected the normal
vector of points on the surface onto the viewing plane and
calculated the points on the curved surface along the various
directions in the viewing plane. According to Cole’s [27],
[28] comparative analysis of existing three-dimensional model
line rendering algorithms, the Suggestive Contours method
can obtain better model feature line segments. Therefore, this
paper chooses the Suggestive Contours method to obtain the
visual features of the object.

III. METHODOLOGY

In the methodology section we will introduce the prepa-
ration of our dataset, followed by describing our network
structure in detail. In addition, we will describe the method of
generating multi-view sketches.

A. Training Data

1) Line drawings of 3D objects: Because our network
should be able to translate surface and shape information
out of a given 3D object at any view direction to human-
like sketches, we need to construct a training dataset which
includes “snapshots” of a 3D shape from all possible angles.
Furthermore, since the final output is line drawing sketches
, we also need to make a linear representation of these
“snapshot” images.

At the beginning, we carefully considered the dataset used
by Sketch-RNN [7] and sketch-pix2seq [20], from Quick-
Draw [29], a public sketch database published by Google.
However, almost all the sketches in the QuickDraw dataset are

taken from a frontal perspective that do not meet our multi-
view requirements. Thus we need to synthetically construct a
new dataset specifically designed for our problem.

Considering that real human freehand sketches are often
casual and spontaneously expressive, it is reasonable to make
such a linear representation including not just the outer con-
tours of the object but also the internal detail lines. Using
the Suggestive Contours method [1], we can get a variety of
perspective views of a 3D object, which constitute the initial
form of our dataset. Specifically, we place the normalized 3D
object in the central point and then rotate it randomly and
uniformly by 2900 times. For each view we capture it into
a 256×256 image. Generally it takes less than 20 minutes
to finish capturing all images. Among all the images, we
randomly select 2300 images for training, 300 images for
testing and the rest 300 image for validation.

2) Vectorization and simplification: Next we use the Win-
topo software [30] to vectorize all the sketch images into actual
vector lines represented as a sequence of vertices (i.e., point
coordinate data) and edges (i.e., connectivity information).

Because the above linear representation has a rich set
of internal lines, the number of line segments is overlarge,
making the subsequent training difficult. Therefore, before
vectorization we first filter the line segments and remove short
ones (length below 3 pixels). Here we also apply the Ramer-
Douglas-Peucke method [31] to do stroke simplification. This
method has a controlling parameter ε for deciding whether to
discard a certain input point, depending on how aggressively
the user wants to simplify the lines. In all of our experiment,
we set the parameter ε to be 0.1.

Next we reform all the lines into the same data format used
in QuickDraw [29], which sequentially represents each vector
line as a list of coordinate offsets: ∆x,∆y and the binary

value p indicating whether the pen is lifted away from the
paper. This format is denoted as stroke-3. Before inputting
these line data into our network, we again transform all the
stroke-3 lines into stroke-5 format, i.e., (∆x,∆y, p1, p2, p3).
The first two elements are the offset distances of the pen in
the x and y directions from the previous point respectively.
The last 3 elements represent three states of possible strokes:
the first state p1 indicates that the pen is now contacting the
paper and will draw a sketch line in succession; the second
state p2 describes that the pen is going to be lifted away from
the paper immediately after the current point, and the drawing
of the current line will not continue; and the last pen state p3
indicates that the drawing has finally ended.

B. Network Structure

The Sketch-RNN [7] model whose encoder is a bidirectional
RNN that takes a sketch as an input and outputs a latent vector,
is a Sequence-to-Sequence Variational Autoencoder (VAE)
network. Its decoder is an autoregressive RNN sampling
output sketches conditionally on a given latent vector. In our
approach, we drop the encoder based on Sketch-RNN [7]. The
reasons for this modification are as follows.

Firstly, as discussed before, VAE has the disadvantage that
the resulting samples are usually blurred due to injected noise
and imperfect elemental measurements such as squared errors.
Secondly, as described in sketch-pix2seq [20], although the
bidirectional RNN encoder is used to reduce the data di-
mension from a two-dimensional image to a one-dimensional
sequence, additional information unrelated to the abstract
structure of the sketches, e.g., the sketching speed, might affect
the performance of concept learning. Meanwhile we remove
the KL divergence from the objective function because the
bidirectional RNN encoder has been removed and it is not
necessary to specify a reasonable prior.

In addition to the above modifications, we also add a
discriminative network after the decoder to further guarantee
that the generated sequences of data are maximally similar
to the real sequence of inputs. The discriminator D consists
of a RNN because all input data are sequential. In this
situation, the part of the decoder and GMM is equivalent to
a generative network, and the whole framework becomes a
GAN. So the network we construct is a RNN with adversarial
training. According to the description of [4], the generator G
is iteratively trained to generate data as indistinguishable as
possible from the genuine data, and the discriminator D is
constructed to verify the generated sample. The architecture
of our network is illustrated in Figure 1: the Real image
is obtained from a given view direction of the 3D object
using suggestive contours [1]. The St is the input sequence
generated from the Real image, and yt is the data generated
from the decoder. S

′

t is the sampling result at that time step. A
sequence of generated points S

′
forms the Fake sketch.Index

t is the time step. The part of the decoder, i.e., the green
LSTM and GMM (Gaussian mixture model) are equivalent to
the generator (G) for generating the sequence data, and the
discriminator (D) is trained to verify whether the generated

sample is acceptable enough. Here we define the objective
function as follows:

min
G

max
D

Ex∼pr
[D(x)] − Ex̃∼pg

[D(x̃)] (1)

where x is the real sequence from the training data and x̃ is the
sequence generated by G. pr and pg are data distribution and
model distribution produced by the generator G, respectively.

C. Two-phase Sampling

We now describe in detail our sampling process we specif-
ically design for generating a complete line draw sketch from
the trained GAN. Let us denote the total number of points on
a line draw sketch as Θ. Our sampling can be regarded as a
two-phase process. For the first phase, we compute the first
N points. For the second phase, the rest Θ − N points are
generated.

Specifically, in the first phase we directly copy the stroke-5
points St from the input vectorized suggestive contour sketch
as the first N points of the output. Whereas, for the second
phase, we iteratively feed the output of our GAN at time
step t − 1, i.e, S

′

t−1 to be the input of GAN at time step
t to generate S

′

t , similar to Sketch-RNN [7]. In other words,
the GAN recursively generates parameters for categorical and
GMM distribution during each timestep.

The effect of the first phase is to constrain the overall
direction of the final result sketch to be as close as possible
to the user intended viewpoint. It is natural to imagine these
first N points as “nails” or anchor points, which “pin”, i.e.,
fix not only themselves but also all rest Θ −N point to form
the correct sketch conforming to the given viewpoint. Ideally
in geometry, 3 non-collinear points determines a Cartesian
system. We double-check the sketch vectorization to confirm
that not consecutive 3 points are co-linear. So we set N = 3,
i.e., we use the first 3 points as anchors in this paper.

Our aforementioned assumptions are confirmed by our ex-
periments. E.g., discarding the first phase, i.e., setting N = 0,
always leads to entirely wrong orientation of the sketch, see
the two “N = 0” rows in Figure 3. Only 2 anchor points can
not constrain the orientation either, since the GAN can still
occasionally generate wrong sketches that are reflective sym-
metric to the required view direction, see such a highlighted
case in the red circled of Figure 3. On the contrary, N = 3
guides the sampling process to generate correct orientation,
see Figure 3.

IV. EXPERIMENTS

According to the description of Sketch-RNN [7], when an
encoder is incorporated, it is called conditional generation,
and conversely, it is unconditional when the encoder is not
used. We perform several experiments on conditional and
unconditional vector image generation using the network with
or without the discriminator D, i.e., we compare the results
of our modified network with their corresponding results of
the original Sketch-RNN model, see Table I. As shown in
Figure 2, the comparison results visually demonstrate that

Viewpoint ED D ED𝔻 D𝔻Suggestive
Contours

D𝔻

τ=0.8

τ=0.3

τ=0.4

τ=0.7

τ=0.8

τ=0.3

τ=0.1 τ=0.5

τ=0.1 τ=0.5

τ=0.1 τ=0.5

τ=0.1 τ=0.5

τ=0.1 τ=0.5

τ=0.1 τ=0.5

D𝔻

τ=0.8

τ=0.3

τ=0.4

τ=0.7

τ=0.8

τ=0.5

τ=0.1 τ=0.5

τ=0.2 τ=0.8

τ=0.2 τ=0.8

τ=0.1 τ=0.4

τ=0.3 τ=0.5

τ=0.1 τ=0.7

Fig. 2. Comparison of the 4 generative models on Table I. From left to right: 3D rendering, corresponding suggestive contours [1], and sketch results of ED,
D, EDD, DD with 3 different τ value.

TABLE I
MODELS TRAINED FOR COMPARISON. ED: THE MODEL WITH A RNN
ENCODER AND A RNN DECODER; D: THE MODEL ONLY WITH A RNN

DECODER; EDD: THE MODEL WITH A RNN ENCODER, A RNN DECODER
AND A RNN DISCRIMINATOR; DD: THE MODEL WITH A RNN DECODER

AND A RNN DISCRIMINATOR, NO ENCODER.

Model name Encoder Decoder Discriminator

ED X X

D X

EDD X X X

DD(ours) X X

TABLE II
USER STUDY:PROPORTION OF USER VOTES ON SKETCHES GENERATED BY

FOUR DIFFERENT MODELS.

Model name ED D EDD DD(ours)

Vote 6.5% 22.1% 22.2% 49.2%

our method can generate more reasonable and stable freehand
sketches of a given 3D objects.

A. Data Processing

We capture the suggestive contours rendering of each model
from different viewpoints to get two-dimensional line drawing
images with size of 256×256. Then, the vectorization process
is performed to obtain two-dimensional coordinate informa-
tion. We also filter the vector line segments using the method
described in the section III-A2. Note here the value of p of
the stroke-3 format is determined according to the start and
end points of the line segment.

B. Implementation Details

For fairly comparison, we use LSTM for the encoder,
decoder and discriminator. The encoder RNNs consist of 256
nodes, and the total number of nodes contained in both the
decoder D and the discriminator D are set to be 512. We
also apply recurrent dropout [32] to maintain a probability of
90%. We optimize using Adam [33] with the learning rate
of the generator and discriminator to be 0.001, and the batch
size to be 100. we also perform simple data augmentation by
multiplying two IID random factors chosen uniformly from
within 0.90 and 1.10 onto the offset columns (∆x,∆y). We
conduct comparative experiments on four network models, see
Table I. Apart from their structural differences, i.e., with or
without encoder or discriminator, all the common parameters
used in these four network models are exactly the same.

C. Results and Analysis

For comparison, we first train four different generative
network structures (see Table I) using the same training data,
i.e., sketches from all 2300 viewpoints. First we test them on
the 3D vase, wine glass, mug and key objects. For each of
them, we generate three viewpoints to test these four network
structure, see Figure 2. All the sketch results are produced

N=0

N=1

N=2

N=3

N=0

N=1

N=2

N=3

N=4

N=4

Fig. 3. The effects of parameter N . See Section IV-C for details.

with N = 3 (see Section III-C). It can be clearly observed that
the sketches generated by the EDD, DD networks, i.e., with
a discriminator, have stronger stability of the sketch structure
while at the same time exhibit reasonable freehand drafting
styles created by real humans. The sketches generated by the
ED and D model without a discriminator are more likely to
become cluttered. We conclude that adding a discriminator to
the network can effectively help generate sketches with correct
overall shapes.

We also conduct a user study to qualitatively analyze the
generated sketch results. Then we invite 40 users to participate
in the survey. First we prepare 60, i.e., 4×3×5 sketches,
which are generated by the four network models in Table I,
including three 3D objects: vases, wine glasses, hammers, and
randomly select 5 different viewpoints for each 3D object.
These 60 sketches are shown in Figure 6. Note that we set
the temperature parameter τ for ED and D as 0.1, because
even when the parameter is 0.1, the degree of randomness is
very high. We set the parameter τ for EDD and DD as 0.3
to reduce their regularity. For each row of Figure 6, we first
randomly shuffle the order of each sketch of the 4 networks,
then we ask each user to vote for the sketch which looks more
similar to human hand-drawings and more correctly describe
the input shape. The statistic results are shown in Table II,
which shows that very few people voted for ED, a small
number of people voted for D and EDD, and most people
voted for DD. It is easy to see that the user study results
comply with our previous results and analysis that the network
with a discriminator produces more aesthetically pleasing and
acceptable sketches that are more preferred by average users.

We also test the effect of different values of the parameter
N during our two-phase sampling step (Section III-C). Let

us recall that the first N generated points are used as the
anchor points to constrain the orientation of the generated
sketch to be similar to the input condition. The test results
are shown in Figure 3, where we show cases of 2 different
viewpoints using our DD model when N equals 0, 1, 2, 3 and
4 respectively. For each viewpoint, 6 sketches are randomly
sampled from our DD model. When N = 0, the experimental
result of the generation is completely random, and its angle
of view is totally unaffected by the input. As N increases,
the angle of the generated sketch is closer to the input.
We also observe that setting an overlarge N could generate
over-constrained sketches without the satisfactory degree of
abstraction to express human hand drawing style. Note that
we set the temperature parameter τ for all result of Figure 3
as 0.2.

In addition to the parameter N , we use another parameter
τ , denoted as temperature parameter,to control the degree of
randomness in results. We test the effect of different τ and
its impact is shown in Figure 4. Here we sample on two 3D
objects: wine glass and hammer, where we increase τ from
0.1 to 0.8 by 0.1 interval. The sketch results are color-coded
according to τ , i.e., τ = 0.1 is shown in blue, and τ = 0.8 in
red. The valid range of value of τ is between 0 and 1. The
results clearly suggest that with a increasing τ the degree of
randomness of the sketch increases gradually, which complies
with our prediction here.

Finally we test the replicability of our approach by using
different training datasets. Specifically we retrain our DD
network model using 3 different mixed datasets, see Figure 5.
Here Dataset A consists of 50% Quickdraw sketches and
50% sketches from our synthetic dataset; Dataset B consists
of 66% Quickdraw sketches and 34% sketches from our
synthetic dataset; Dataset C consists of 100% Quickdraw
sketches. Unfortunately we discover that even though the
Quickdraw dataset clearly captures freehand sketch style, the
mixed training fails to generate better results as universally
exhibited in Figure 5. Even though all the results here are
produced using our two-phase sampling method with N = 3
and the smallest possible τ = 0.1, the retained network cannot
correctly produce sketches with the same angle as the input.
Please compare Figure 5 with Figure 2. The underlying reason
for this is that most of the Quickdraw data are from those
popular viewpoints that the average users prefer to select
when they are asked to make a draft sketch of a certain
object. For instance, most of the sketches of the wineglass
in Quickdraw are from an upright and frontal viewpoint.
This means the Quickdraw dataset does not provide enough
information describing a 3D shape from any viewpoints.

Our approach has several limitations: Firstly, our method
needs to train an individual neural network for every different
3D object, so it will be much powerful if we can achieve
cross-modal generation in the future. Secondly, even though
we specifically optimize for the balance between structural
correctness and level of abstraction and distortion for our
results, the actual human freehand drawings can still express
much larger degree of diversity and abstraction than our

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8

Fig. 4. Sketches with an increasing degree of freehand style generated using
parameter τ increased from 0.1 to 0.8.See the electronic PDF for color image.

Viewpoint Dataset C:
100% QuickDraw

Dataset A:
50% QuickDraw+50% Ours

Dataset B:
67% QuickDraw+33% Ours

Fig. 5. Sketches generated when the Quickdraw data is added to our dataset.
Note the wrong orientation of the sketches.

results. Augmenting our dataset using real human freehand
sketch from multiple viewpoints will be helpful for this issue.
Thirdly, our approach has a preprocess of converting the 3D
object into 2D image information that depends on third-party
softwares.

V. CONCLUSION

In this paper, we proposed a stroke-level 3D object-to-sketch
synthesizing neural network that enables stroke-level cross-
domain visual understanding from a reference 3D shape. The
overall method is a supervised uncycled translation network
trained for sketch generation. In order to increase structural
stability, we remove the encoder and add a discriminator to
better approximate the input shape. Our approach also allows
users to tune the degree of randomness of the generated sketch
by simply changing a single temperature parameter. We com-
pare the performance of the four network models, i.e., Encoder
with Decoder (ED), Decoder (D), Encoder and Decoder with
Discriminator (EDD), Decoder with Discriminator (DD). It is
shown that our model achieves better results in generating free
hand drawing sketch of 3D objects.

For future work, we can try building a real human freehand
drawing sketches database consisting of all possible view-
points of various 3D models. We will also try to avoid the pre-
processing process to enable full end-to-end sketch generation.
Another direction is the exploration of other new neural
network structure and vectorial representations of sketch lines
for this topic.

ACKNOWLEDGMENT

Shizhe Zhou are supported by the grant of Science Founda-
tion of Hunan Province (No. 2018JJ3064), National Science

Viewpoint ED(τ=0.1) D (τ=0.1) ED𝔻(τ=0.3) D𝔻(τ=0.3)

Fig. 6. Data for user study. The statistic results are shown in Table II.

Foundation of China (No. 61303147) and HPCSIP Key
Laboratory,Ministry of Education, China. Hongbo Fu was
partially supported by grants from the City University of
Hong Kong (Project No. 7005176 (SCM)), and the Centre for
Applied Computing and Interactive Media (ACIM) of School
of Creative Media, CityU. We gratefully acknowledge the
support of NVIDIA Corporation.

REFERENCES

[1] D. Decarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Sug-
gestive contours for conveying shape,” Acm Transactions on Graphics,
vol. 22, no. 3, pp. 848–855, 2003.

[2] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
International Conference on Learning Representations, 2014.

[3] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” arXiv
preprint arXiv:1401.4082, 2014.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in International Conference on Neural Information Processing Systems,
2014, pp. 2672–2680.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[6] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” arXiv preprint
arXiv:1606.03498, 2016.

[7] D. Ha and D. Eck, “A neural representation of sketch drawings,” arXiv
preprint arXiv:1704.03477, 2017.

[8] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in IEEE
International Conference on Computer Vision, 2017, pp. 2242–2251.

[9] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with
adversarial training,” arXiv preprint arXiv:1611.09904, 2016.

[10] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “Cvae-gan: Fine-
grained image generation through asymmetric training,” arXiv preprint
arXiv:1703.10155, 2017.

[11] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover
cross-domain relations with generative adversarial networks,” ICML, pp.
1857–1865, 2017.

[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[13] Y. Mroueh, T. Sercu, and V. Goel, “Mcgan: Mean and covariance feature
matching gan,” arxiv preprint arXiv:1702.08398, 2017.

[14] G. J. Qi, “Loss-sensitive generative adversarial networks on lipschitz
densities,” arxiv preprint arXiv:1701.06264, 2017.

[15] A. B. L. Larsen, S. K. Snderby, and O. Winther, “Autoencod-
ing beyond pixels using a learned similarity metric,” arXiv preprint
arXiv:1512.09300, 2015.

[16] A. Adate and B. Tripathy, “S-lstm-gan: Shared recurrent neural networks
with adversarial training,” in Proceedings of the 2nd International
Conference on Data Engineering and Communication Technology, 2019,
pp. 107–115.

[17] S. Simhon and G. Dudek, “Sketch interpretation and refinement using
statistical models,” in Eurographics Workshop on Rendering Techniques,
Norkping, Sweden, June, 2004, pp. 23–32.

[18] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[19] C. M. Bishop, “Mixture density networks,” Citeseer, Tech. Rep., 1994.
[20] Y. Chen, S. Tu, Y. Yi, L. Xu, Y. Chen, S. Tu, Y. Yi, L. Xu, Y. Chen,

and S. Tu, “Sketch-pix2seq: a model to generate sketches of multiple
categories,” arXiv preprint arXiv:1709.04121, 2017.

[21] U. R. Muhammad, Y. Yang, Y.-Z. Song, T. Xiang, and T. M. Hospedales,
“Learning deep sketch abstraction,” in CVPR, 2018.

[22] J. Song, K. Pang, Y.-Z. Song, T. Xiang, and T. M. Hospedales, “Learning
to sketch with shortcut cycle consistency,” in CVPR, 2018.

[23] A. Hertzmann, “Introduction to 3d non-photorealistic rendering: Silhou-
ettes and outlines,” Non-Photorealistic Rendering. SIGGRAPH, vol. 99,
no. 1, 1999.

[24] M. Y. Sang, M. Scherer, T. Schreck, and A. Kuijper, “Sketch-based 3d
model retrieval using diffusion tensor fields of suggestive contours,” in
International Conference on Multimedea, 2010, pp. 193–200.

[25] S. M. Yoon and A. Kuijper, “View-based 3d model retrieval using
compressive sensing based classification,” in The 7th International
Symposium on Image and Signal Processing and Analysis, ISPA 2011,
IEEE, 2011, pp. 437–442.

[26] T. Judd, F. Durand, and E. H. Adelson, “Apparent ridges for line
drawing.” Acm Transactions on Graphics, vol. 26, no. 3, p. 19, 2007.

[27] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros, A. Finkelstein,
T. A. Funkhouser, and S. Rusinkiewicz, “Where do people draw lines?”
in Acm Transactions on Graphics, 2008, pp. 1–11.

[28] F. Cole, K. Sanik, D. Decarlo, A. Finkelstein, T. A. Funkhouser,
S. Rusinkiewicz, and M. Singh, “How well do line drawings depict
shape?” in Acm Transactions on Graphics, 2009, pp. 1–9.

[29] T. K. J. K. N. F.-G. Jonas Jongejan, Henry Rowley, “The quick, draw!”
-A.I.Experiment, 2016, https://quickdraw.withgoogle.com.

[30] SoftSoft Ltd, “Wintopo.” [Online]. Available: http://wintopo.com/
[31] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature,”
Cartographica: The International Journal for Geographic Information
and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[32] S. Semeniuta, A. Severyn, and E. Barth, “Recurrent dropout without
memory loss,” arXiv preprint arXiv:1603.05118, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

