Hash Il —
Common Methods and
Analysis for linear probing

Instructor: Shizhe Zhou
Course Code:00125401

Choosing a hash function

The assumption of simple uniform hashing
1s hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:

A good hash function should distribute the
keys uniformly into the slots of the table.

* Regularity in the key distribution should
not affect this uniformity.

Assumption : Simple Uniform Hashing

 Each key ke S is equally likely to be hashed to
any slot in T(table), independent of where
other keys are hashed.

— What'’s the odds that 2 keys are hashed into the
same slot? 1/m

— What’s the odds that one key is hashed into slot
15? 1/m

Division method

Assume all keys are integers, and define
h(k) = k mod m.

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

Extreme deficiency: If m = 27, then the hash
doesn’t even depend on all the bits of £:

It &£=1011000111011010, and » = 6, then
h(k) =011010,. h(k)

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.

Annoyance:
» Sometimes, making the table size a prime is
inconvenient.

But, this method 1s popular, although the next
method we’ll see is usually superior.

Multiplication method

Assume that all keys are integers, m = 2’, and our
computer has w-bit words. Define

h(k) = (A*k mod 2%) rsh (w —r),

where rsh is the “bit-wise right-shift” operator
and 4 is an odd integer in the range 2" < A4 <2,

* Don’t pick A4 too close to 2".
» Multiplication modulo 2" is fast.
* The rsh operator 1s fast.

Multiplication method
example
h(k) = (A*k mod 2*) rsh (w — 7)

Suppose that 77 = 8 = 27 and that our computer
has w = 7-bit words:

34
0.1011001:14
X 1101011 _
10010100110011
\ﬂ_l
h(k) A

- Modular wheel 24

Dot-product method

Randomized strategy:
Let m be prime. Decompose key & into 7 + 1

digits, each with value in the set {0, 1, ..., m—1}.
That s, let k = {(ky, k, ..., k,,), where O < k. <m.
Picka={a, a,....,a, 1) where each «a, is chosen
randomly from {0, 1, ..., m—1}.

Define /, (k) = Za k; mod m.
1=0
 Excellent 1in practice, but expensive to compute.

Hash functions

Solution: Use a hash function h to map the

universe U of all keys into T
{0, 1, ..., m—1}: 0

h(k,)
h(k,)

h(k,) = h(ks)

h(ks)

m—1

When a record to be inserted maps to an already
occupied slot in 7, a collision occurs.

Resolving collisions by
chaining

* Records 1in the same slot are linked into a list.
T

h(49) = h(86) = h(52) = i

Analysis of chaining

We make the assumption of simple uniform

hashing:

* Each key & € K of keys 1s equally likely to
be hashed to any slot of table 7, independent
of where other keys are hashed.

Let n» be the number of keys in the table, and
let m be the number of slots.

Define the load factor of 7 to be

o = n/m
= average number of keys per slot.

Search cost

Expected time to search for a record with
a given key = O(1 + o).

N

apply hash search
function and the list
access slot

Expected search time = O(1) if oo = O(1),
or equivalently, 1f » = O(m).

Resolving collisions by open
addressing

No storage is used outside of the hash table itself.

* Insertion systematically probes the table until an
empty slot is found.

 The hash function depends on both the key and
probe number:

h:Ux{0,1,....m-1} > {0, 1, ..., m—1}.
* The probe sequence (/(k,0), h(k,1), ..., h(k,m—1))
should be a permutation of {0, 1, ..., m—1}.

* The table may fill up, and deletion 1s difficult (but
not impossible).

Example of open addressing

Insert key & = 496: 7

0. Probe /(496,0)
\ 586
133
204

481

collision

m—1

Example of open addressing

Insert key & = 496: -

0

0. Probe /(496,0) N
1. Probe /(496,1) i collision

204

481

m—1

Example of open addressing

Insert key & = 496:

0. Probe /(496,0)
1. Probe /(496,1)

2. Probe /1(496,2) ~

insertion

m—1

Example of open addressing

Search for key k& = 496:

0. Probe /(496,0)
1. Probe 7(496,1) \
2. Probe /(496.2) — N

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.

m—1

A useful Heuristic

 When using probing, if a maximum probing
number M >=1 is defined when doing all the
insertion, then the largest steps of probing

needed when doing searching should also be
M.

— e.g., const int MaxProbe_Insertion = 5;

* Avoid long runs or endless searching..

e Performance ++

Probing strategies

Linear probing:

Given an ordinary hash function /'(k), linear
probing uses the hash function

h(k,i) = (h'(k) + i) mod m.

This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

Probing strategies

Double hashing

Given two ordinary hash functions /(%) and 7,(k),
double hashing uses the hash function

h(k,i) = (h,(k) + i-h,(k)) mod m.

This method generally produces excellent results,
but /,(k) must be relatively prime to 7. One way
1s to make 2 a power of 2 and design /,(k) to
produce only odd numbers.

Analysis of open addressing

We make the assumption of uniform hashing:

* Each key 1s equally likely to have any one of
the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor oo = n/m < 1, the
expected number of probes in an unsuccessful
search 1s at most 1/(1—o).

Proof of the theorem

Proof.

* At least one probe is always necessary.

» With probability n/m, the first probe hits an
occupied slot, and a second probe 1s necessary.

» With probability (n—1)/(m—1), the second probe
hits an occupied slot, and a third probe is
necessary.

» With probability (n—2)/(m—2), the third probe
hits an occupied slot, etc.

Observe that 7~ L <™ =¢ fori=1,2, ..., n.
m —1 m

Proof (continued)

Therefore, the expected number of probes i1s

e e)

<l+a(l+a(l+a(---(1+a)-)))

<l+a+a’+a’+--
EI) .
_ l
= L% The textbook has a
i=0 more rigorous proof.

|
K

Implications of the theorem

* If o 1s constant, then accessing an open-
addressed hash table takes constant time.

» If the table 1s half full, then the expected
number of probes 1s 1/(1-0.5) = 2.

» [f the table 1s 90% full, then the expected
number of probes is 1/(1-0.9) = 10.

