
Keynotes on Data structure 2
-Hash table

Instructor: Shizhe Zhou
Course Code:00125401

How to Implement a Dictionary?

• Sequences
– ordered
– unordered

• Binary Search Trees

• Hashtables

Direct Access Table

Hashing

• Another important and widely useful
technique for implementing dictionaries

• Constant time per operation (on the average)
• Worst case time proportional to the size of the

set for each operation (just like array and list
implementation)

压缩映像 injection

Basic Idea

• Use hash function to map keys into
positions in a hash table

Ideally
• If element e has key k and h is hash

function, then e is stored in position h(k) of
table

• To search for e, compute h(k) to locate
position. If no element, dictionary does not
contain e.

Example

• Dictionary Student Records
– Keys are ID numbers (951000 - 952000), no more

than 100 students
– Hash function: h(k) = k-951000 maps ID into

distinct table positions [01000]
– array table[1001]

...

0 1 2 3 1000

hash table

buckets

Analysis (Ideal Case)
• O(b) time to initialize hash table (b number

of positions or buckets in hash table)
• O(1) time to perform insert, remove, search

与map的区别: 不关心元素之间
的顺序，如果希望元素按某种顺
序排列，map比hash_map更合适.
是高效的关联容器。Even better
than map!

Ideal Case is Unrealistic

• Works for implementing dictionaries, but many
applications have key ranges that are too large to have 1-1
mapping between buckets and keys!

Example:
• Suppose key can take on values from 0 .. 65,535 (2 byte

unsigned int)
• Expect ≈ 1,000 records at any given time
• Impractical to use hash table with 65,536 slots!

Hash Functions, collisions

• If key range too large, use hash table with fewer
buckets and a hash function which maps
multiple keys to same bucket:

h(k1) = β = h(k2): k1 and k2 have collision at slot β

• Popular hash functions: hashing by division
h(k) = k%D, where D number of buckets in hash table

• Example: hash table with 11 buckets
h(k) = k%11
80 → 3 (80%11= 3), 40 → 7, 65 → 10
58 → 3 collision!

Collision Resolution Policies

• Two classes:
– (1) Open hashing, a.k.a. separate chaining [p.57]
– (2) Closed hashing, a.k.a. open addressing

• Difference has to do with whether collisions
are stored outside the table (open hashing)
or whether collisions result in storing one of
the records at another slot in the table
(closed hashing)

Closed Hashing

• Associated with closed hashing is a rehash strategy:
 “If we try to place x in bucket h(x) and find it occupied, find

alternative location h1(x), h2(x), etc. Try each in order, if
none empty table is full,”

• h(x) is called home bucket
• Simplest rehash strategy is called linear hashing

hi(x) = (h(x) + i) % D

• In general, our collision resolution strategy is to generate a
sequence of hash table slots (probe sequence) that can hold
the record; test each slot until find empty one (probing)

Example Linear (Closed) Hashing
• D=8, keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4,

h(d)=3

0

2

3

4

5

6

7

1

b

a
c

Where do we insert d? 3 already filled
Probe sequence using linear hashing:
h1(d) = (h(d)+1)%8 = 4%8 = 4
h2(d) = (h(d)+2)%8 = 5%8 = 5*
h3(d) = (h(d)+3)%8 = 6%8 = 6
etc.
7, 0, 1, 2

Wraps around the beginning of the
table!

d

Operations Using Linear Hashing
• Test for membership: findItem
• Examine h(k), h1(k), h2(k), …, until we find k or an empty

bucket or home bucket
• If no deletions possible, strategy works!
• What if deletions?
• If we reach empty bucket, cannot be sure that k is not

somewhere else and empty bucket was occupied when k
was inserted. So no way to know to go on or to delete just the bucket???

• Need special placeholder deleted, to distinguish bucket that
was never used from one that once held a value

• May need to reorganize table after many deletions

If no deletions at all, strategy works!

Performance Analysis - Worst Case
• Initialization: O(b), b# of buckets (or slots)
• Insert and search: O(n), n number of

elements in table; all n key values have
same home bucket

• No better than linear list for maintaining
dictionary!

Performance Analysis - Avg Case

• Distinguish between successful and
unsuccessful searches
– Delete = successful search for record to be deleted
– Insert = unsuccessful search along its probe

sequence
• Expected cost of hashing is a function of how

full the table is: load factor α = n/b
• It has been shown that average costs under

linear hashing (probing) are:
– Insertion: 1/2(1 + 1/(1 - α)2)
– Deletion: 1/2(1 + 1/(1 - α))

Presenter
Presentation Notes
Load factor (computer science), the ratio of the number of records to the number of addresses within a data structure

Improved Collision Resolution
• Linear probing: hi(x) = (h(x) + i) % D

– all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

– {bad}clustering of records, leads to long probing sequences
• Linear probing with skipping: hi(x) = (h(x) + ic) % D

– c constant other than 1
– records with adjacent home buckets will not follow

same probe sequence
• (Pseudo)Random probing: hi(x) = (h(x) + ri) % D

– ri is the ith value in a random permutation of numbers
from 1 to D-1

– insertions and searches use the same sequence of
“random” numbers

跳越
搜索

Example

0

1

2

3

4

5

6

7

8

9

10

1001

9537

3016

9874

2009

9875

h(k) = k%11 0

1

2

3

4

5

6

7

8

9

10

1001

9537

3016

9874

2009

9875

1. What if next element has home
bucket 0?
 → go to bucket 3
Same for elements with home
bucket 1 or 2!
Only a record with home position
3 will stay(at home).
⇒(几率) p = 4/11 that next
record will go to bucket 3

2. Similarly, records hashing to 7,8,9
will end up in 10
3. Only records hashing to 4 will end up
in 4 (p=1/11); same for 5 and 6

I

II
insert 1052 (h.b. 7)

1052

next element in bucket
3 with p = 8/11

Hash Functions - Numerical Values
• Consider: h(x) = x%16

– poor distribution, not very random
– depends solely on least significant four bits of key

• Better, mid-square method
– if keys are integers in range 0,1,…,K , pick integer C

such that DC2 about equal to K2, then
h(x) = x2/C % D

 extracts middle r bits(equivalent to the middle digits) of

x2, where 2r=D (a base-D digit)

– better, because most or all of bits of key contribute
to result(随机性:随机分布的key得到随机hash address)

 0100, 2500, 3792, and 7600

ustc
文本框
 exceptions:

Hash Function –
Strings of Characters

• Folding Method:
int h(String x, int D) {
int i, sum;
for (sum=0, i=0; i<x.length(); i++)

sum+= (int)x.charAt(i);

return (sum%D);
}

– sums the ASCII values of the letters in the string
• ASCII value for “A” =65; sum will be in range 650-900 for

10 upper-case letters; good when D around 100, for
example

– order of chars in string has no effect

Hash Function –
Strings of Characters

• Much better: Cyclic Shift
static long hashCode(String key, int D)
{

 int h=0;

 for (int i=0, i<key.length(); i++){
h = (h << 4) | (h >> 27);

h += (int) key.charAt(i);

}

 return h%D;

}

Open Hashing

• Each bucket in the hash table is the head of a
linked list

• All elements that hash to a particular bucket
are placed on that bucket’s linked list

• Records within a bucket can be ordered in
several ways
– by order of insertion, by key value order, or by

frequency of access order

 Open Hashing Data Organization

0

1

2

3

4

D-1

...

...

...

Analysis for Open hash
• Open hashing is most appropriate when the hash table is kept

in main memory, implemented with a standard in-memory
linked list

• We hope that number of elements per bucket roughly equal
in size, so that the lists will be short

• If there are n elements in set, then each bucket will have
roughly n/D

• If we can estimate n and choose D to be roughly as large, then
the average bucket will have only one or two members

Analysis Cont’d
Average time per dictionary operation:
• D buckets, n elements in dictionary ⇒

average n/D elements per bucket
• insert, search, remove operation take

O(1+n/D) time each
• If we can choose D to be about n, constant

time
• Assuming each element is likely to be hashed

to any bucket, running time constant,
independent of n

Comparison with Closed Hashing

• Worst case performance is O(n) for both

• Number of operations for hashing
– 23 6 8 10 23 5 12 4 9 19
– D=9
– h(x) = x % D

Hashing Problem

• Draw the 11 entry hashtable for hashing the
keys 12, 44, 13, 88, 23, 94, 11, 39, 20 using the
function (2i+5) mod 11, closed hashing, linear
probing

• Pseudo-code for listing all identifiers in a
hashtable in lexicographic order, using open
hashing, the hash function h(x) = first
character of x. What is the running time?

	Keynotes on Data structure 2�-Hash table
	How to Implement a Dictionary?
	Hashing
	Basic Idea
	Example
	Analysis (Ideal Case)
	Ideal Case is Unrealistic
	Hash Functions, collisions
	Collision Resolution Policies
	Closed Hashing
	Example Linear (Closed) Hashing
	Operations Using Linear Hashing
	Performance Analysis - Worst Case
	Performance Analysis - Avg Case
	Improved Collision Resolution
	Example
	Hash Functions - Numerical Values
	Hash Function – �Strings of Characters
	Hash Function – �Strings of Characters
	Open Hashing
	 Open Hashing Data Organization
	Analysis for Open hash
	Analysis Cont’d
	Comparison with Closed Hashing
	Hashing Problem

