Keynotes on Data structure 2
-Hash table

Instructor: Shizhe Zhou
Course Code:00125401

How to Implement a Dictionary?

* Sequences

— ordered
— unordered
* Binary Search Trees -
keys function buckets
e Direct Access Table o s
=00 E G 7C 02 | 521-1234
« Hashtables L

13
Sandra Dee
T —— = [14[5219655

15

An example : Symbol table problem
Symbol table S holding » records:

record
X Operations on S

key|x

yix] « INSERT(S.,)
Other fields gELETE(‘gj “Z)
- containing EARCH(S, £)
satellite data

How should the data structure S be organized?

* The simplest DS: Direct Access Table
* Simple deletion

* Simple inserting — write over the slot in the array
* Simplestsearch—indexing!!!

Direct Access Table

IDEA: Suppose that the keys are drawn from
the set U {0, 1, ..., m—1}, and keys are
distinct. Set up an array 710 . . m—1]:
[x ifx € Kand key[x] =k,
~ L niL otherwise.
Then, operations take O(1) time.

Problem: The range of keys can be large:
* 64-bit numbers (which represent

Limitation: the keys could be drawn from a
monster size set, say 2764 integer (™
18,446,744,073,709,551,616

[18 Quintillion{cubic of a million) |

Hashin

* Another important and widely useful
technique for implementing dictionaries

* Constant time per operation (on the average)

* Worst case time proportional to the size of the
set for each operation (just like array and list
implementation) X_ X

J& 48 4% injection E E _

Basic Idea

* Use hash function to map keys into
positions in a hash table

|deally

* |f element e has key k and h is hash
function, then e is stored in position h(k) of
table

e To search for e, compute h(k) to locate

position. If no element, dictionary does not
contain e.

Example

* Dictionary Student Records

— Keys are ID numbers (951000 - 952000), no more
than 100 students

— Hash function: h(k) = k-951000 maps ID into

distinct table positions [0—>1000] hash table
—array table[1001] /
01 23 1000
T

buckets

Analysis (Ideal Case)

* O(b) time to initialize hash table (b number
of positions or buckets in hash table)

 O(1) time to perform insert, remove, search

Smapl] [X 7l]: NItz 2 JH]
I, G 5 A B8 o6 2= 1% SR A I
?ﬂlﬁﬂ map tthash map 5 &1&.

e m A RER A %« Even better
than map!

ldeal Case is Unrealistic

* Works for implementing dictionaries, but many
applications have key ranges that are too large to have 1-1
mapping between buckets and keys!

Example:

e Suppose key can take on values from 0 .. 65,535 (2 byte
unsigned int)

 Expect = 1,000 records at any given time
* Impractical to use hash table with 65,536 slots!

Hash Functions, collisions

If key range too large, use hash table with fewer
buckets and a hash function which maps
multiple keys to same bucket:

h(k,) = B = h(k,): k; and k, have collision at slot 3
Popular hash functions: hashing by division
h(k) = k%D, where D number of buckets in hash table
Example: hash table with 11 buckets
h(k) = k%11
80— 3 (80%11=3),40 —> 7,65 —> 10
58 — 3 collision!

Collision Resolution Policies

* Two classes:
— (1) Open hashing, a.k.a. separate chaining [p.57]

— (2) Closed hashing, a.k.a. open addressing
e Difference has to do with whether collisions
are stored outside the table (open hashing)

or whether collisions result in storing one of
the records at gnother slot in the table

(closed hashing)

Closed Hashing

* Associated with closed hashing is a rehash strategy:

“If we try to place x in bucket h(x) and find it occupied, find
alternative location h,(x), h,(x), etc. Try each in order, if
none empty table is full,”

 h(x)is called home bucket
 Simplest rehash strategy is called linear hashing
h(x) = (h(x) +i) % D

* Ingeneral, our collision resolution strategy is to generate a
sequence of hash table slots (probe sequence) that can hold
the record; test each slot until find empty one (probing)

Example Linear (Closed) Hashing

« D=8, keys a,b,c,d have hash values h(a)=3, h(b)=0, h(c)=4,
h(d)=3

Where do we insert d? 3 already filled

Probe sequence using linear hashing: 0 b
h,(d) = (h(d)+1)%8 = 4%8 = 4
h,(d) = (h(d)+2)%8 = 5%8 = 5*
h,(d) = (h(d)+3)%8 = 6%8 = 6

T Y
W W

etc. 3 a
7,0,1,2 4 ¢
¢ Wraps around the beginning of the 5 d

table!

Operations Using Linear Hashing

* Test for membership: findltem

* Examine h(k), h,(k), h,(k), ..., until we find k or an empty
bucket or home bucket

* If no deletions at all, strategy works!
 What if deletions?

* If we reach empty bucket, cannot be sure that k is not
somewhere else and empty bucket was occupied when k
was inserted. So no way to know to go on or to delete just the bucket???

* Need special placeholder deletedl to distinguish bucket that
was never used from one that once held a value

 May need to reorganize table after many deletions

Performance Analysis - Worst Case

* |nitialization: O(b), b# of buckets (or slots)

* |nsert and search: O(n), n number of
elements in table; all n key values have
same home bucket

* No better than linear list for maintaining
Hash table

d I Ct I O n a ry ! Type Unsorted associative array

Invented 1953

Time complexity
in big O notation

Average Worst case
Space O(n)" O(n)
Search O(1 + n/k) O(n)

k: number of buckets
Insert O(1) O(n)

Delete O(1 + n/k) O(n)

Performance Analysis - Avg Case

* Distinguish between successful and
unsuccessful searches

— Delete = successful search for record to be deleted

— Insert = unsuccessful search along its probe
sequence

* Expected cost of hashing is a function of how
full the table is: load factor o = n/b

* |t has been shown that average costs under
linear hashing (probing) are:
— Insertion: 1/2(1 + 1/(1 - a)?)
— Deletion: 1/2(1+1/(1 - o))

Presenter
Presentation Notes
Load factor (computer science), the ratio of the number of records to the number of addresses within a data structure

Improved Collision Resolution
* Linear probing: h.(x) = (h(x) +i) % D

— all buckets in table will be candidates for inserting a
new record before the probe sequence returns to home
position

- maClustering of records, leads to long probing sequences
* Linear probing with skipping: h(x) = (h(x) +ic) % D Bk
— c constant other than 1 R

— records with adjacent home buckets will not follow
same probe sequence

e (Pseudo)Random probing: h(x) = (h(x) +r.) % D

— r,is the it" value in a random permutation of numbers
from 1 to D-1

— insertions and searches use the same sequence of
“random” numbers

10

1001

Example

9537

3016

9874

1. What if next element has home
bucket 0?

—> g0 to bucket 3
Same for elements with home
bucket 1 or 2!
Only a record with home position
3 will stay(at home).

=(JL%) p = 4/11 that next
record will go to bucket 3

2009

9875

2. Similarly, records hashing to 7,8,9
will end up 1n 10

3. Only records hashing to 4 will end up
in 4 (p=1/11); same for 5 and 6

I1

insert 1052 (h.b. 7)

10

1001

9537

3016

9874

2009

9875

1052

next element in bucket

3 with p = 8/11

Choosing a hash function

The assumption of simple uniform hashing
1s hard to guarantee, but several common
techniques tend to work well 1n practice as
long as their deficiencies can be avoided.

Desirata:

* A good hash function should distribute the
keys uniformly into the slots of the table.

* Regularity in the key distribution should
not affect this uniformity.

Division method

Assume all keys are integers, and define
h(k) = k mod m.

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo ¢ can adversely affect
uniformity.

Extreme deficiency: If m = 27, then the hash

doesn’t even depend on all the bits of £:

e Ifk=101100011 1011010, and » = 6, then
h(k)=011010,. }16}5)

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.

Annoyance:
* Sometimes, making the table size a prime 1s
inconvenient.

But, this method 1s popular, although the next
method we’ll see 1s usually superior.

Multiplication method

Assume that all keys are integers, m = 2/, and our
computer has w-bit words. Define

h(k) = (A*k mod 2") rsh (w —r),

where rsh 1s the “bit-wise right-shift” operator
and A 1s an odd integer in the range 2! <A <2V,

* Don’t pick A4 too close to 2.
* Multiplication modulo 2" 1s fast.
* The rsh operator 1s fast.

Multiplication method
example
h(k) = (4*k mod 2") rsh (w —r)

Suppose that 72 = 8 = 2° and that our computer
has w = 7-bit words:

1011001 _
x 1101011 _
1001010011001 1
——
h(k) 4

Modular wheel

24

Hash Functions - Numerical Values
e Consider: h(x) = x%16

— poor distribution, not very random

— depends solely on least significant four bits of key
e Better, mid-square method

— if keys are integers in range 0,1,...,K, pick integer C

such that DC? about equal to K?, then 675248 <2
h(x) = |_X2/CJ % D 455959861504 |-
g5986i ?n

extracts middle r bits(equivalent to the middle digits) of
x2, where 2'=D (a base-D digit)

— better, because most or all of bits of key contribute
to resultBarLiE: BENL 75 ikey B 2 BEHLhash address)

ustc
文本框
 exceptions:

Hash Function —
Strings of Characters

Folding Method:
int h(String x, 1nt D) {
int 1, sum;
for (sum=0, 1=0; i<x.length(); 1i++)
sum+= (int)x.charAt(i);
return (sum%D);

}
— sums the ASCII values of the letters in the string

e ASCII value for “A” =65; sum will be in range 650-900 for
10 upper-case letters; good when D around 100, for
example

— order of chars in string has no effect

Hash Function —
Strings of Characters

* Much better: Cyclic Shift

static long hashCode (String key, 1int D)
{

int h=0;
for (int 1i=0, i<key.length(); i++) {
h = (h << 4) | (h > 27);

h += (int) key.charAt (i) ;
}
return h%D;

Open Hashing

 Each bucket in the hash table is the head of a
linked list

* All elements that hash to a particular bucket
are placed on that bucket’s linked list

e Records within a bucket can be ordered in

several ways

— by order of insertion, by key value order, or by
frequency of access order

Open Hashing Data Organization

D-1

Analysis for Open hash

* Open hashing is most appropriate when the hash table is kept
in main memory, implemented with a standard in-memory
linked list

 We hope that number of elements per bucket roughly equal
in size, so that the lists will be short

e |fthere are n elements in set, then each bucket will have
roughly n/D

* If we can estimate n and choose D to be roughly as large, then
the average bucket will have only one or two members

Analysis Cont’d

Average time per dictionary operation:

* D buckets, n elements in dictionary =
average n/D elements per bucket

* insert, search, remove operation take
O(1+n/D) time each

* If we can choose D to be about n, constant
time

* Assuming each element is likely to be hashed

to any bucket, running time constant,
independent of n

Comparison with Closed Hashing

* Worst case performance is O(n) for both

* Number of operations for hashing
—-2368 10 23 512 4 9 19
— D=9
—h(x)=x%D

Hashing Problem

* Draw the 11 entry hashtable for hashing the
keys 12, 44, 13, 88, 23, 94, 11, 39, 20 using the
function (2i+5) mod 11, closed hashing, linear
probing

* Pseudo-code for listing all identifiers in a

nashtable in lexicographic order, using open

nashing, the hash function h(x) = first
character of x. What is the running time?

	Keynotes on Data structure 2�-Hash table
	How to Implement a Dictionary?
	Hashing
	Basic Idea
	Example
	Analysis (Ideal Case)
	Ideal Case is Unrealistic
	Hash Functions, collisions
	Collision Resolution Policies
	Closed Hashing
	Example Linear (Closed) Hashing
	Operations Using Linear Hashing
	Performance Analysis - Worst Case
	Performance Analysis - Avg Case
	Improved Collision Resolution
	Example
	Hash Functions - Numerical Values
	Hash Function – �Strings of Characters
	Hash Function – �Strings of Characters
	Open Hashing
	 Open Hashing Data Organization
	Analysis for Open hash
	Analysis Cont’d
	Comparison with Closed Hashing
	Hashing Problem

